Тверской Городской Форум

Статьи, обзоры и общение

Биогаз из навоза

Содержание

Какие условия должна создавать биоустановка?

Наиболее важными условиями, обеспечивающими максимально комфортные условия для деятельности метаногенов, являются:

  • отсутствие притока кислорода (герметичность);
  • постоянная температура, соответствующая типу процессов, происходящих в реакторе;
  • регулируемый приток свежего материала;
  • регулируемый отвод газа и отходов раздельно жидкой и твердой фракции;
  • регулярное перемешивание содержимого, предотвращающее разделение на твердую и жидкую фракции.

Герметичность должна сочетаться с возможностью обслуживания и ремонта внутреннего пространства, ведь содержимым биореактора являются весьма агрессивные вещества.

Для создания достаточной температуры, которая в большинстве случаев сильно превышает уличную, метантенки утепляют и оснащают обогревающими элементами.

Благодаря тому, что биореактор работает на измельченной жиже, разведенной водой до влажности выше 97%, свежий материал подводят по трубам, оснащенным гидрозатвором или клапаном. Это исключает попадание внутрь воздуха и бесконтрольный выход выработанных газов.

Для того, чтобы выработка метана находилась на высоком уровне, необходимо своевременно удалять отходы этого процесса, то есть техническую воду и ил (сапропель). Это делают с помощью труб и гидрозатворов или иных запирающих устройств, которые препятствуют выходу выработанного газа.

Перемешивание производят механическим способом, приводя все содержимое метантенка в круговое и вертикальное движение, благодаря этому разделенные слои разной плотности смешиваются и образуют единый слой, обладающий одинаковой влажностью в любом участке.

Что представляет собой установка для производства биогаза?

Наиболее эффективной формой для этой установки является цилиндр с конусной нижней и конусной или округлой верхней частью, причем нет особой разницы между соотношением диаметра и высоты.

В такой конструкции проще всего реализовать перемешивание расслаивающегося материала, а для повышения температуры важна не форма сосуда, а достаточное количество тепловой энергии и минимум излучения тепла в атмосферу.

Корпус и крышка, в которой расположен первичный газгольдер, могут быть выполнены из бетона или нержавеющей стали. Основное преимущество бетонных корпусов в том, что их не приходится целиком или по частям везти издалека, а опалубку для заливки собирают на месте из досок.

Главным недостатком является сложность создания и поддержания в биореакторе достаточной температуры, ведь необходимо прогревать не только содержимое метантенка, но и бетонные стенки устройства. Устройства небольшого объема (1–20 м3) нередко изготавливают из полипропилена, полиэтилена и других полимеров.

Для обогрева содержимого внутри стенок прокладывают трубы для движения теплоносителя или формируют «водяную рубашку», то есть полость между утепляющим слоем и внутренней стенкой.

Первый способ используют в бетонных конструкциях, а второй в сделанных из нержавеющей стали. Внутреннюю поверхность стен из любых материалов нередко покрывают химически инертными по отношению к навозу материалами, благодаря чему многократно возрастает срок службы метантенка.

Входное отверстие, через которое в емкость попадает исходный материал, и отверстие для слива технической воды располагают там, где перед перемешиванием оказывается участок воды. В большинстве случаев расположение этого отверстия соответствует половине уровня максимального заполнения.

В самой нижней части днища делают отверстие для отвода сапропеля. В нижней части крышки делают эластичный мешок, выполняющий функцию первичного газгольдера и соединенный через клапан с газопроводом.

Существуют модели и без мешка, там местом для накапливания газа служит свободное пространство между крышкой и стеной.

Однако у такой схемы есть недостаток – высокая вероятность утечки газа через плохо заделанные щели.

В большинстве биореакторов система перемешивания состоит из вертикального вала и установленных на нем лопастей. При вращении они создают направленное вверх или вниз движение большей части содержимого, благодаря чему и происходит перемешивание слоев.

Однако встречаются устройства с гидравлическим перемешиванием, в которых готовый субстрат подают через днище под большим давлением, благодаря чему возникают вихревые возмущения, перемешивающие содержимое.

Но такая система перемешивания уместна лишь там, где соотношение объемов суточной порции субстрата и всего содержимого метантенка не превышает 1:10.

Дополнительное оборудование

К дополнительному оборудованию, без которого невозможна работа биореактора, относят:

  • измельчающее устройство;
  • источник тепловой энергии;
  • систему сброса технической воды;
  • хранилище сапропеля;
  • очистную установку;
  • основной газгольдер;
  • установку сжижения газа;
  • газгольдер для сжиженного газа;
  • управляющую систему.

Измельчающее устройство

Измельчающее устройство принимает поступающую с мест содержания животных/птиц навозную/пометную жижу, а также смытую или убранную вручную подстилку и измельчает все крупные фрагменты, чтобы облегчить работу бактерий.

Кроме того, измельчающее устройство смешивает измельченную массу с водой, чтобы обеспечить необходимый уровень влажности, причем во время смешивания происходит доизмельчение материала.

Такой измельченный и разведенный водой материал называют субстратом.

После подготовки субстрат по трубам поступает в метантенк и смешивается с находящимся в нем веществом.

Источник тепловой энергии

Чаще всего роль такого источника исполняет адаптированный для работы на метане газовый котел, который в зимнее время также снабжает теплом систему отопления.

Преимуществом метанового котла является возможность подключения к основному газгольдеру, благодаря чему удается обойтись без привлечения дополнительных энергоресурсов.

При этом необходимо постоянно отслеживать температуру внутри биореактора, чтобы она все время находилась в оптимальных пределах и, при необходимости, увеличивать или снижать подачу газа, для чего внутри емкости устанавливают датчики температуры.

Система сброса технической воды

Сливаемая с биореактора техническая вода содержит немного органических и неорганических веществ, но в ней нет ни возбудителей болезней, ни яиц или личинок глистов, а также семян сорняков. Поэтому ее можно использовать для полива, а также для разведения составов, используемых для подкормки.

Для реализации всех этих возможностей система, помимо периодически открываемого сливного клапана, должна содержать емкость для технической воды и средства доставки к месту использования.

Хранилище сапропеля

Скапливающийся на дне метантенка сапропель через специальный клапан поступает в хранилище, где постепенно накапливается.

Он является хорошим удобрением, сопоставимым с перегноем, однако менее качественно разрыхляющим почву.

Тем не менее, сапропель эффективно заменяет многие комплексные удобрения, ведь содержит широкий спектр органических и неорганических веществ.

После заполнения хранилище открывают и извлекают из него собранный материал, который затем вносят в почву.

Очистное устройство

Биогаз состоит из метана (50–60%) и других газов, поэтому в неочищенном состоянии обладает малой теплотворной способностью.

Очистная установка удаляет из него углекислый газ и сероводород, благодаря чему доля метана составляет 94–97%.

Такой очищенный биогаз по своей теплотворной способности сопоставим с природным и сжиженным газом, поэтому его можно использовать в качестве топлива для любых устройств, изначально работающих на указанных видах топлива.

Основной газгольдер

Это оборудование необходимо для сглаживания перепадов давления газа во время подключения или отключения потребителей. Газгольдер изготавливают из стали, благодаря чему он выдерживает давление в десятки или сотни атмосфер.

Вместе с газгольдером работает и насос, закачивающий в него газ под необходимым давлением.

Аппарат сжижения газа и газгольдер для его хранения

Эта установка позволяет запасать газ в те периоды, когда потребление меньше производства. Дело в том, что сжиженный газ занимает гораздо меньше места, поэтому при одинаковом объеме хранилища его можно запасти заметно больше.

Аппарат сжижает газ с помощью охлаждения, благодаря чему он переходит из газообразного в жидкое состояние.

Газгольдер для сжиженного газа изготавливают из высокопрочной стали, а также тщательно утепляют, ведь давление внутри газгольдера зависит не только от количества сжиженного метана, но и от его температуры.

Такой газгольдер позволяет в летние месяцы делать запас сжиженного метана, который зимой можно будет использовать для отопления или других нужд, компенсируя им недостаточную выработку биогаза.
Кроме того, сжиженный газ из газгольдера хорошо подходит для заправки автомобилей и иной техники, работающей на таком виде топлива.

Управляющая система

Для обеспечения максимальной выработки биогаза, а также для увеличения доли метана в нем необходимо не только поддерживать оптимальную температуру, но и своевременно выполнять все необходимые действия, то есть:

  • подавать субстрат;
  • отводить воду;
  • удалять сапропель;
  • регулировать работу очистной и сжижающей установок.

Все эти действия выполняет управляющая система, которая состоит из центрального сервера и различных периферийных устройств.

Кроме того, к ней подключены датчики, отслеживающие состояние и работоспособность всех входящих в нее устройств.

Принцип работы

Когда биореактор загружают в первый раз или после долгого простоя, то после загрузки первой партии субстрата количество бактерий в нем недостаточно для того, чтобы все процессы шли с необходимой скоростью.

Поэтому первые 5–15 дней (зависит от режима работы) происходит накопление субстрата и размножение населяющих его бактерий, которые постепенно приступают к переработке содержимого биореактора.

Переработка происходит в три этапа:

  • разложение помета/навоза, а также растительности на моносахариды и другие простые органические вещества (гидролиз);
  • образование кислот и кетонов (кислотообразование);
  • переработка уксусной кислоты и углекислого газа в метан (метанообразование).

Все процессы происходят благодаря определенным бактериям. Гидролизные выделяют определенные энзимы, расщепляющие органику и делающие ее пригодной для всасывания через клеточные стенки. Кислотообразующие бактерии впитывают результаты гидролиза и выделяют соответствующие вещества, которые, в свою очередь, служат питанием для метаногенов.

Несмотря на то, что в помете или навозе изначально содержатся все необходимые бактерии, активно размножаться и выполнять свою функцию они смогут лишь после создания подходящих условий.

Гидролизные бактерии не могут перерабатывать твердые вещества, а кислотообразующие начинают активно размножаться и функционировать только после того, как гидролизные бактерии обеспечат их подходящим питанием. Точно так же обстоит дело и с метанообразующими микроорганизмами.

Когда все три типа микроорганизмов размножатся, а их численность достигнет необходимого значения, метантенк перейдет в активный режим работы.

После вливания в него новой порции субстрата происходит смешивание свежих и переработанных веществ, поэтому каждый вид бактерий получает необходимое ему питание.

Метаногены, потребляя продукты жизнедеятельности кислотообразующих бактерий, выделяют вещества, которые образуют сапропель.

Возбудители болезней и яйца/личинки глистов точно так же подвержены действию энзимов, которые расщепляют их на простые органические вещества. В результате этого процесса эти вредители погибают, после чего вода становится условно безопасной.

Кроме того, гидролизные бактерии расщепляют вещества, являющиеся причиной неприятного запаха навоза или помета, поэтому переработанная вода уже не обладает запахом исходного продукта.

Выделенный метаногенами биогаз скапливается в верхней части биореактора, откуда через реагирующий на определенное давление клапан поступает в основной газгольдер, а после по трубам движется к потребителям.

Если потребители долгое время отключены и давление в газгольдере достигло определенного значения, то запасенный газ поступает к установке сжижения, а затем в газгольдер для сжиженного газа.

Как определить оптимальные размеры?

Время полного цикла переработки экскрементов в биогаз и сапропель зависит от температурного режима.

Существуют 3 типа температурных режимов, которые мы поместили в таблицу.

Режимы Температура градусов Цельсия, при которой бактерии этого типа наиболее активны Время полного перегнивания субстрата (суток) и краткое описание результатов процесса перегнивания
Психрофильный 10–25 20–60, минимальная выработка метана, максимальное образование сапропеля
Мезофильный 25–40 10–20, хорошая производительность выработки метана, сапропеля немного
Термофильный 40–60 5–10, максимальная выработка метана, минимум веществ уходит в сапропель

Объем метантенка должен вмещать весь субстрат, произведенный за время полного перегнивания. Кроме того, объем биореактора необходимо увеличить на 15–30%, которые будут использованы для образования первичного газгольдера.

Несмотря на то, что термофильный процесс является наиболее эффективным, а объем метантенка для него будет минимальным, он не пользуется спросом из-за необходимости поддерживать очень высокую температуру.

Из-за этого сильно возрастают расходы газа на поддержку температуры и снижается общий объем готового продукта.

Тем не менее, при больших ежедневных объемах экскрементов и ограниченности пространства для установки метантенка термофильный режим будет наиболее предпочтительным.

Поэтому наиболее популярным является мезофильный режим, ведь он сочетает относительно малое время перегнивания (при температуре 35 градусов оно в среднем составляет 15 суток) и не слишком высокую температуру. Психрофильный процесс не получил распространения из-за слишком большого времени перегнивания.

Для наиболее популярного (мезофильного) режима полный объем метантенка должен превосходить ежедневный объем разведенного водой субстрата в 15–25 раз или превосходить объем суточного сбора навоза/помета в 20–35 раз.

Бывают ли метантенки других конструкций?

Помимо традиционного метантенка, называемого также вертикальным, встречаются устройства, получившие название горизонтальных биореакторов.

Они состоят из нескольких (обычно 2–3) вертикальных метантенков, выстроенных в одну линию или находящихся в общем корпусе.

Отработанная техническая вода поступает во второй отдел, где весь процесс метанового брожения начинается заново. Ведь вместе с водой туда поступают частички органики, в том числе не прошедшей через гидролиз.

Из-за того, что содержание органики во втором отделе гораздо меньше, чем в первом, его производительность невелика, поэтому его чаще рассматривают как систему дополнительной очистки сброшенной воды.

Третий отдел обеспечивает окончательную очистку воды, поэтому его ставят лишь там, где технологией предусмотрено частое перемешивание перегнивающей массы, из-за чего вместе со сбрасываемой водой уходит заметная часть органики.

Общая производительность по биогазу у горизонтальных устройств такая же, как у вертикальных, однако из-за слишком большого размера и сложности конструкции такие устройства не получили широкого распространения в качестве метантенков.

Зато их активно применяют для очистки бытовых и промышленных стоков, содержащих различные органические вещества. Иногда в качестве второго отдела используют открытую емкость, но это применимо лишь там, где даже зимой температура редко опускается ниже значения 10–15 градусов.

Производители и модели

Мы подготовили краткий обзор наиболее популярных моделей российских производителей, ведь они ничем не отличаются от их аналогов зарубежного производства.

Большинство производителей биореакторов и биоустановок предлагают не только модели с конкретными характеристиками, но и подгонку существующих моделей под ситуацию заказчика.

Кроме того, часть производителей предлагает полный перечень узлов, необходимых для создания полностью автономной биогазовой установки, тогда как другие производят лишь биореактор и некоторые сопутствующие устройства.

BioMash-20

Биогазовая установка от «Конструкторского бюро Климова» подходит для переработки навоза/помета влажностью ≤90% общей массой 300–700 кг в сутки с добавлением подстилочного материала (максимум 20% от массы).

Биореактор изготовлен из полиэтилена, поэтому не требует обслуживания и ремонта.

Вместе с реактором поставляют основной газгольдер и насос для его накачки (максимальное давление 2,8 Мпа). Благодаря столь высокому давлению газ можно закачивать в обычные газовые баллоны.

Также в комплект входят:

  • газовый теплогенератор, выделяющий 100 квт в сутки;
  • метановый электрогенератор мощностью 11 квт;
  • полный комплект оборудования для обогрева метантенка;
  • полный комплект газопроводов.

Серия «БИО»

Эти установки производства компании «Агробиогаз» предназначены для переработки навоза/помета весом 10–350 тонн в сутки (зависит от модели).

Корпуса изготовлены из нержавеющей стали и современных полимерных материалов, поэтому не требуют обслуживания или ремонта.

Преимуществом этой серии является относительно невысокая цена, однако в комплект поставки входит лишь минимальный набор оборудования, поэтому газгольдеры и многое другое придется приобретать отдельно.

Серия «СБГ»

Эту серию биогазовых комплексов выпускает кировская компания «СельхозБиоГаз».

Благодаря индивидуальному подходу к каждому клиенту, компания предлагает не только готовые комплекты, но и изготовление такой продукции под конкретные условия.

В модельном ряду представлены установки, способные за сутки переработать от 100 килограмм до 1000 тонн экскрементов.

В комплект поставки входит все необходимое оборудование для развертывания полноценной линии по переработке навоза в газ и очистке продукта.

Серия «БУГ»

Серию биогазовых установок «БУГ» производит ассоциация предприятий «БМП».

Биогаз. Получение метана в домашних условиях.

В эту серию входят биореакторы небольшого объема (0,5–12 м3), оснащенные газгольдерами емкостью 1–2 м3.

Относительно невысокая стоимость комплекта компенсируется минимумом входящего в него оборудования, обеспечивающего лишь перегнивание материала и выделение биогаза.

Поэтому основными покупателями этой серии установок для производства биогаза из навоза и помета становятся небольшие фермерские хозяйства или домохозяйства с большим поголовьем птиц/скота.

Серия «БГР»

Серию биогазовых установок «БГР» выпускает расположенное в Яранске предприятие «BioGasRussia». Самая маломощная установка этой серии (БГР-12) способна переработать 500 – 900 кг экскрементов в сутки, а объем ее биореактора составляет 12 м3.

Объем реактора и массу ежедневного поступления навоза для более крупных установок этой серии обговаривают индивидуально, благодаря чему заказчик получает аппарат или даже завод, максимально соответствующие его потребностям.

В составе установок большого объема могут быть как вертикальные, так и горизонтальные метантенки, это обсуждается при оформлении заказа.

Кроме того, компания BioGasRussia предлагает весь спектр необходимого оборудования, благодаря чему биогазовая установка может работать в полностью автономном режиме — без подключения к электрическим или газовым сетям.

Можно ли сделать метантенк самостоятельно?

Самодельные биогазовые установки отличаются от промышленных лишь размерами и производительностью, но общий принцип остается неизменным. Поэтому для изготовления биореактора понадобится герметично закрывающаяся емкость из кислотостойкого материала, в которую нужно будет вставить устройство для перемешивания субстрата.

Для домашних метантенков не слишком важна возможность частичного слива отработанной воды, а также периодическая доливка субстрата, поэтому их нередко делают без отверстия для слива. Однако число таких емкостей должно превосходить число дней, необходимое для полного перегнивания материала.

Основной проблемой домашних устройств является сложность очистки биогаза от примесей, поэтому чаще всего очистку проводят с помощью водяных фильтров. Проходя через воду, биогаз оставляет в ней какую-то часть примесей, из-за чего концентрация метана возрастает.

Несмотря на то, что поднять концентрацию метана до уровня промышленных установок (95–98%) невозможно, такая очистка с использованием нескольких фильтров поднимает уровень метана до значения 75–85%, что вполне достаточно для бытового применения.

В домашних условиях редко удается запустить мезофильный процесс из-за сложностей с утеплением и обогревом реактора, однако даже психрофильный процесс может дать достаточно газа для работы кухонной печи.

Тем не менее, в домах, где содержат множество живности, лучше потратиться на обогрев и утепление метантенка, что позволит сократить его объем и увеличить выход готового газа.

Для того, чтобы ежедневно доливать в него экскременты животных/птиц и кухонные отходы, устраивают естественный слив с использованием гидрозатвора.

Однако для этого установку придется поместить под землей, а сбрасываемую воду либо отводить на поле, предназначенное для ее отстоя, либо сливать в одну или несколько переходных емкостей, где проскочившие органические остатки будут догнивать, превращаясь в ил.

Причем желательно, чтобы последняя из емкостей обеспечивала аэробное (с доступом кислорода) брожение, это увеличит качество очистки жидкости и сделает ее безопасной. Однако для этого объем последней емкости, в качестве которой нередко используют бетонированные лагуны, должен быть в несколько раз больше, чем у метантенка.

Видео по теме

Подробнее об устройстве и принципе работы биоустановки серии БУГ в данном видео:

Биореактор для переработки навоза – это основной элемент биогазовой установки, ведь именно в нем бактерии превращают отходы животноводства и птицеводства в метан и другие газы. Поэтому от правильности выбора типа метангенератора и режима его работы зависит скорость и эффективность переработки экскрементов в горючий газ.

Кроме того, необходимо правильно подобрать сопутствующее оборудование для производства биогаза, которое обеспечивает эффективную работу биореактора. Без этого установка не сможет качественно перерабатывать отходы в полезные продукты.

«Безумный Макс 3. Под куполом грома» все смотрели? Тогда читаем очередной копипаст, взятый отсюда: http://serhii.my1.ru/publ/stati_dr_avtorov/biogaz_…

Биогаз. Получение метана в домашних условиях.

Что такое биогаз?

В последнее время все большее внимание привлекают нетрадиционные, с технической точки зрения, источники энергии: солнечное излучение, морские приливы и волны и многое другое. Некоторые из них, например ветер, находили широкое применение и в прошлом, а сегодня переживают второе рождение. Одним из «забытых» видов сырья является и биогаз, использовавшийся еще в Древнем Китае и вновь «открытый» в наше время.

Что же такое биогаз? Этим термином обозначают газообразный продукт, получаемый в результате анаэробной, то есть происходящей без доступа воздуха, ферментации (перепревания) органических веществ самого разного происхождения. В любом крестьянском хозяйстве в течение года собирается значительное количество навоза, ботвы растений, различных отходов. Обычно после разложения их используют как органическое удобрение. Однако мало кто знает, какое количество биогаза и тепла выделяется при ферментации. А ведь эта энергия тоже может сослужить хорошую службу сельским жителям.

Биогаз — смесь газов. Его основные компоненты: метан (CH4) — 55-70% и углекислый газ (СО2) — 28-43%, а также в очень малых количествах другие газы, например — сероводород (H2S).

В среднем 1 кг органического вещества, биологически разложимого на 70%, производит 0,18 кг метана, 0,32 кг углекислого газа, 0,2 кг воды и 0,3 кг неразложимого остатка.

Факторы, влияющие на производство биогаза.

Поскольку разложение органических отходов происходит за счет деятельности определенных типов бактерий, существенное влияние на него оказывает окружающая среда. Так, количество вырабатываемого газа в значительной степени зависит от температуры: чем теплее, тем выше скорость и степень ферментации органического сырья. Именно поэтому, вероятно, первые установки для получения биогаза появились в странах с теплым климатом. Однако применение надежной теплоизоляции, а иногда и подогретой воды позволяет освоить строительство генераторов биогаза в районах, где температура зимой опускается до -20?С. Существуют определенные требования и к сырью: оно должно быть подходящим для развития бактерий, содержать биологически разлагающееся органическое вещество и в большом количестве воду (90-94%). Желательно, чтобы среда была нейтральной и без веществ, мешающих действию бактерий: например, мыла, стиральных порошков, антибиотиков.

Для получения биогаза можно использовать растительные и хозяйственные отходы, навоз, сточные воды и т. п. В процессе ферментации жидкость в резервуаре имеет тенденцию к разделению на три фракции. Верхняя — корка, образованная из крупных частиц, увлекаемых поднимающимися пузырьками газа, через некоторое время может стать достаточно твердой и будет мешать выделению биогаза. В средней части ферментатора скапливается жидкость, а нижняя, грязеобразная фракция выпадает в осадок.

Бактерии наиболее активны в средней зоне. Поэтому содержимое резервуара необходимо периодически перемешивать — хотя бы один раз в сутки, а желательно — до шести раз. Перемешивание может осуществляться с помощью механических приспособлений, гидравлическими средствами (рециркуляция под действием насоса), под напором пневматической системы (частичная рециркуляция биогаза) или с помощью различных методов самоперемешивания.

Установки для получения биогаза.

В Румынии генераторы биогаза получили широкое распространение. Одна из первых индивидуальных установок (рис.1А) была введена в эксплуатацию еще в декабре 1982 года. С тех пор она успешно обеспечивает газом три соседствующие семьи, имеющие каждая по обычной газовой плите с тремя конфорками и духовкой. Ферментатор находится в яме диаметром около 4 м и глубиной 2 м (объем примерно 21 м3), выложенной изнутри кровельным железом, сваренным дважды: сначала электрической сваркой, а затем, для надежности, газовой. Для антикоррозионной защиты внутренняя поверхность резервуара покрыта смолой. Снаружи верхней кромки ферментатора сделана кольцевая канавка из бетона глубиной примерно 1 м, выполняющая функцию гидрозатвора; в этой канавке, заполненной водой, скользит вертикальная часть колокола, закрывающего резервуар.

Колокол высотой около 2,5 м — из листовой двух миллиметровой стали. В верхней его части и собирается газ.

Автор этого проекта выбрал вариант собирания газа в отличив от других установок с помощью трубы, находящейся внутри ферментатора и имеющей три подземных ответвления — к трем хозяйствам. Кроме того, вода в канавке гидрозатвора проточная, что предотвращает обледенение в зимнее время.

Наипростейшая установка для получения биогаза для отопления дома

Ферментатор загружается примерно 12 м3 свежего навоза, поверх которого выливается коровья моча (без добавления воды. Генератор начинает работать через 7 дней после наполнения.

Похожую компоновку имеет еще одна установка (рис. 1Б). Ее ферментатор сделан в яме, имеющей квадратное поперечное сечение размерами 2х2 и глубиной примерно 2,5 м. Яма облицована железобетонными плитами толщиной 10-12 см, оштукатурена цементом и покрыта для герметичности смолой. Канавка гидрозатвора глубиной около 50 см также бетонная, колокол сварен из кровельного железа и может на четырех «ушках» свободно скользить по четырем вертикальным направляющим, установленным на бетонном резервуаре. Высота колокола примерно 3 м, из которых 0,5 м погружено в канавку.

При первом наполнении в ферментатор было загружено 8 м3 свежего коровьего навоза, а сверху запито примерно 400 л коровьей мочи. Через 7- 8 дней установка уже полностью обеспечивала владельцев газом.

Аналогичную конструкцию имеет и генератор биогаза, рассчитанный на прием 6 м3 смешанного навоза (от коров, овец и свиней). Этого оказалось достаточно, чтобы обеспечить нормальную работу газовой плиты с тремя конфорками и духовкой.

Еще одна установка отличается любе пытной конструктивной деталью: рядом с ферментатором уложены присоединенные к нему с помощью Т-образного шланга три большие тракторные камеры, соединенные и между собой (риг. 2). В ночное время, когда биогаз не используется и накапливается под колоколом, возникает опасность, что последний из-за избыточного давления опрокинется. Резиновый резервуар служит дополнительной емкостью. Ферментатора размером 2х2×1,5 м вполне достаточно для работы двух горелок, а при увеличении полезного объема установки до 1 м3 можно получить количество биогаза, достаточное и для обогрева жилища.

Особенность этого варианта установки — устройство колокола 138 см и высотой 150 см из прорезиненного полотна, применяемого для изготовления надувных лoдок. Ферментатор представляет собой металлический резервуар 140х380 см и имеет объем 4,7 м3. Колокол вводится в находящийся в ферментаторе навоз на глубину не менее 30 см для обеспечения гидравлического заслона выходу биогаза в атмосферу. В верхней части разбухающего резервуара предусмотрен кран, соединенный со шлангом; по нему газ поступает к газовой плите с тремя конфорками и колонке для нагрева воды. Чтобы обеспечить оптимальные условия для работы ферментатора, навоз смешивается с горячей водой.Наилучшие результаты установка показала при влажности сырья 90% и температуре 30-35°.

Для обогрева ферментатора используется и эффект теплицы. Над емкостью сооружается металлический каркас, который покрывают полиэтиленовой пленкой: при неблагоприятных погодных условиях она сохраняет тепло и позволяет заметно ускорить процесс разложения сырья.

В Румынии генераторы биогаза используются и в государственных или кооперативных хозяйствах. Вот один из них. Он имеет два ферментатора емкостью по 203 м3, закрытых каркасом с полиэтиленовой пленкой (рис. 3). Зимой навоз обогревается горячей водой. Производительность установки составляет 300-480 м3 газа в день. Такого количества вполне хватает для обеспечения всех потребностей местного агропромышленного комплекса.

Практические советы.

Как уже отмечалось, решающую роль. в развитии процесса ферментации играет температура: нагрев сырья с 15? до 20° может вдвое увеличить производство энергоносителя. Поэтому часто генераторов имеет специальную систему подогрева сырья, однако большинство установок не оборудовано ею; они используют лишь тепло, выделяемое в процессе самого разложения органических веществ. Одним из важнейших условий нормальной работы ферментатора является наличие надежной ТЕПЛОИЗОЛЯЦИИ. Кроме того, необходимо свести к минимуму потери тепла при очистке и наполнении бункера ферментатора.

Необходимо помнить также о необходимости обеспечения биохимического равновесия, Иногда темпы производства бактериями кислот выше, чем темпы их потребления бактериями второй группы, В этом случае кислотность массы растет, а выработка биогаза снижается. Положение может быть исправлено либо уменьшением ежедневной порции сырья, либо увеличением его растворимости (по возможности, горячей водой), либо, наконец, добавкой нейтрализующего вещества — например известкового молока, стиральной или питьевой соды.

Производство биогаза может уменьшиться за счет нарушения соотношения между углеродом и азотом. В этом случае в ферментатор вводят вещества, содержащие азот, — мочу или в небольшом количестве соли аммония, используемые обычно в качестве химических удобрений (50 — 100 г на 1 м3 сырья).

Следует помнить, что высокая влажность и наличие сероводорода (содержание которого в биогазе может достигать 0,5%) стимулируют повышенную коррозию металлических частей установки. Поэтому состояние всех остальных элементов ферментатора следует регулярно контролировать и в местах повреждений тщательно защищать: лучше всего свинцовым суриком — в один или два слоя, а затем еще двумя слоями любой масляной краски.

В качестве трубопровода для транспортировки биогаза от выпускного патрубка в верхней части колокола установки до потребителя могут использоваться как трубы (металлические или пластмассовые), так и резиновые шланги. Их желательно вести в глубокой траншее, чтобы исключить разрывы из-за замерзания зимой конденсировавшейся воды. Если же транспортировка газа с помощью шланга осуществляется по воздуху, то для отвода конденсата необходимо специальное устройство. Самая простая схема такого приспособления представляет собой U-образную трубку, присоединенную к шлангу в самой нижней его точке (рис. 4). Длина свободной ветви трубки (х) должна быть больше, чем выраженное в миллиметрах водяного столба давление биогаза. По мере того как в трубку стекает конденсат из трубопровода, вода выливается через ее свободный конец без утечки газа.

В верхней части колокола целесообразно также предусмотреть патрубок для установки манометра, чтобы по величине давления судить о количестве накопленного биогаза.

Опыт эксплуатации установок показал, что использование в качестве сырья смеси разных органических веществ дает больше биогаза, чем при загрузка ферментатора одним из компонентов. Влажность сырья рекомендуется немного уменьшать зимой (до 88-90%) и повышать летом (92-94%). Вода, которую используют для разбавления, должна быть теплой (желательно 35-40°).

Сырье подается порциями, по крайней мере один раз в сутки. После первой загрузки ферментатора нередко сначала вырабатывается биогаз, который содержит более 60% углекислого газа и поэтому не горит. Этот газ удаляют в атмосферу, и через 1 -3 дня установка начнет функционировать нормально.

Доброго времени суток всем! Этот пост продолжает тему альтернативной энергетики для вашего. В нем я вам расскажу о биогазе и его использовании для обогрева жилища и приготовления пищи. Наиболее эта тема интересна фермерам, у которых есть доступ к разнообразному сырью для получения этого вида топлива. Давайте для начала разберемся в том, что такое биогаз и откуда он берется.

Откуда берется биогаз и из чего он состоит?

Биогаз — горючий газ, возникающий как продукт жизнедеятельности микроорганизмов в питательной среде. Этой питательной средой может быть навоз или силос, который закладывается в специальный бункер. В этом бункере, который называется реактором, и происходит образование биогаза. Внутри реактор будет устроен следующим образом:

Для ускорения процесса брожения биомассы необходим ее подогрев. Для этого может быть использован ТЭН или теплообменник, подключенный к любому отопительному котлу. Нельзя забывать и о хорошей теплоизоляции, чтобы избежать лишних затрат энергии на подогрев. Кроме подогрева, бродящую массу необходимо перемешивать. Без этого КПД установки может значительно снижаться. Перемешивание может быть ручным или механическим. Тут все зависит от бюджета или имеющихся в наличии технических средств. Самое главное в реакторе — это объем! Маленький реактор просто физически не способен выдать большое количество газа.

Химический состав газа сильно зависит от того какие процессы протекают в реакторе. Чаще всего там происходит процесс метанового брожения, в результате которого образуется газ с большим процентным содержанием метана. Но вместо метанового брожения вполне может происходить процесс с образованием водорода. Но по моему мнению, для обычного потребителя водород не нужен, а может даже и опасен. Вспомните хотя бы гибель дирижабля Гинденбург. Теперь давайте разберемся из чего можно получать биогаз.

Структурная схема установки для биогаза.

Для того, чтобы наилучшим образом понимать как работает установка для получения биогаза давайте рассмотрим следующий рисунок:

Устройство биореактора было рассмотрено выше, поэтому о нем говорить не будем. Рассмотрим другие составные части установки:

  • Приемник отходов — это некая емкость, в которую попадает сырье на первом этапе. В ней сырье может смешиваться с водой и измельчаться.
  • Насос (после приемника отходов) — фекальный насос, при помощи которого биомасса перекачивается внутрь реактора.
  • Котел — отопительный котел на любом топливе, предназначенный для обогрева биомассы внутри реактора.
  • Насос (рядом с котлом) — циркуляционный насос.
  • «Удобрения» — емкость, в которую попадает перебродивший ил. Он, как понятно, из контекста может использоваться как удобрение.
  • Фильтр — устройство, в котором происходит доведение биогаза до кондиции.

    В фильтре убираются лишние примеси газов и влаги.

  • Компрессор — осуществляет сжатие газа.
  • Газовое хранилище — герметичная цистерна, в которой готовый к применению газ может хранится сколь угодно долго.

Биогаз для частного дома.

Многие владельцы небольших ферм задумываются об использовании биогаза для внутренних нужд. Но разузнав по-подробнее о том, как все это работает большинство оставляет эту затею. Связано это с тем, что оборудование для переработки навоза или силоса стоит огромных денег, а выход газа (в зависимости от сырья)может получиться небольшим. Это в свою очередь делает установку оборудования невыгодным. Обычно, для частных домов фермеров устанавливают примитивные установки, работающие на навозе. Они, чаще всего, способны обеспечить газом только кухню и маломощный настенный газовый котел. При этом на сам технологический процесс придется затратить немало энергии — на подогрев, перекачку, работу компрессора. Дорогостоящие фильтра тоже нельзя исключать из поля зрения.

В общем, мораль тут такая — чем больше сама установка, тем выгоднее ее работа. А для домашних условий это практически всегда невыполнимо. Но это не значит, что домашних установок никто не делает. Предлагаю вам посмотреть следующее видео, чтобы увидеть как это выглядит из подручных материалов:

Резюме.

Биогаз — отличный способ полезной переработки органических отходов. На выходе получается топливо и полезное удобрение в виде перебродившего ила. Данная технология работает тем эффективней, чем больший объем сырья перерабатывается. Современные технологии позволяют серьезно увеличить выработку газа при помощи применения специальных катализаторов и микроорганизмов. Главным минусом всего этого является высокая цена одного кубометра. Для обычных людей чаще всего будет гораздо дешевле покупать газ в баллонах, чем делать установку по переработке отходов. Но, конечно, из всех правил есть исключения, поэтому перед тем, как принять решение о переходе на биогаз стоит посчитать цену кубометра и сроки окупаемости. На этом пока все, пишите вопросы в комментариях

Сотрудники биотехнологической компании Calysta намерены построить первый в мире большой завод, использующий микроорганизмы для преобразования природного газа (метана, CH4) в высокобелковый корм для животных. Планируется, что предприятие построят в США и что оно будет производить ежегодно порядка 200 тысяч тонн комбикорма. Представители Calysta планируют создать завод в сотрудничестве с продовольственной компанией Cargill.

«Метановая» еда ранее уже была одобрена в Европейском Союзе в качестве корма для фермерской рыбы и домашнего скота, например, свиней. На данный момент сотрудники Calysta пытаются получить такое же одобрение и в США, и не только для сельскохозяйственных животных. «Мы хотим применять подобный способ создания пищи и для собак, и для кошек, и потенциально даже для людей», — говорит глава Calysta Алан Шоу (Alan Shaw).

В начале осени представители Calysta открыли небольшое предприятие в Великобритании, оно способно производить ежегодно до 100 тонн корма для фермерских рыб. Компания Unibio – конкурирующая биотехнологическая организация – также открыла в октябре подобное предприятие в Дании. И обе компании стремительно наращивают производство.

Процесс строится на работе микробов, питающихся метаном. Подобные метанотрофные бактерии по сути «сжигают» метан для получения энергии, создавая при этом CO2 и воду в качестве отходов. Часть этой энергии затем используется для объединения других молекул метана, чтобы создать более сложные молекулы углерода. А уже на их основе можно получать продукты питания.

Способность микробов питаться метаном впервые начала развиваться миллиарды лет назад (вероятно, она предшествовала появлению фотосинтеза), и сегодня метанотрофных бактерий можно встретить везде, где присутствует метан.

В компании Calysta используют бактерии Methylococcus capsulatus. Бактерии выращивают в особых цистернах, «кормят» метаном, а затем сушат и превращают в гранулы.

Подобная идея была впервые изучена и исследована в 1980-х годах в государственной норвежской компании Statoil. В 2000-х годах был построен первый завод, способный производить 10 тысяч тонн подобного корма в год. Но в то время цены на газ были достаточно высокими, и продукция не была одобрена в ЕС. Предприятие было закрыто, а технология работы продана компании Calysta.

Сейчас же существует и разрешение на производство продукции, и цены на природный газ значительно снизились, так что Шоу считает, что технология готова к «большим переменам». В конкурирующей компании Unibio считают так же.

Представители двух предприятий продвигают технологию, обозначая её как экологически выгодную.

Установка для производства биогаза (дешевый газ своими руками)

Шоу говорит, что она словно «вестник новый эры, в которой технологии могут прокормить растущее население всего мира».

Преобразование ископаемого топлива в корм для скота может стать хорошей идеей, но есть и ряд минусов. Всё зависит от того, что считать более важным, когда речь идёт о защите окружающей среды.

Поясним. Большое количество подобных предприятий помогут сократить спрос на сельскохозяйственную землю для выращивания корма скоту. Всё это хорошо, например, для животных, которым могут вернуть естественную среду обитания. (Если, конечно, земли отберут не у них или отдадут именно им.)

Но подобные предприятия также приведут к увеличению выбросов углекислого газа, ускоряющего глобальное потепление. «Использование ископаемого топлива в качестве источника энергии является не самым экологически чистым вариантом», — говорит Боб Рис (Bob Rees), который изучает выбросы парниковых газов сельским хозяйством.

Ещё один плюс: по словам специалистов, в один прекрасный день подобная технология сможет прокормить покорителей других планет. Например, глава компании SpaceX Илон Маск намерен включить в миссию к Марсу технологию генерирования метана и кислорода для создания ракетного топлива. Нечто похожее можно использовать и для создания еды. «Мы в контакте с представителями SpaceX», — говорит Шоу.

Между тем организация Carbon Trust подготовила доклад о влиянии «метановых» продуктов питания на окружающий мир. Отметим, что сотрудники Carbon Trust консультируют правительства и компании о способах уменьшения выбросов.

В отчёте сравнивается, сколько необходимо земли и воды для различных способов производства корма, а также сколько CO2 выделяется в ходе применения каждой из этих технологий.

Специалисты заключили, что при использовании метана из органических источников при создании корма получается в несколько раз больше CO2, чем при использовании других методов производства или добычи корма. Только производство куриной кровяной муки имеет более высокий средний выброс CO2 на одну тонну корма.

В теории выбросы углерода могут быть значительно уменьшены посредством использования метана из возобновляемых источников – биогаза из сельскохозяйственных отходов, например. Подобный метод позволит сократить «вред» до уровня выбросов, сопоставимого со способом изготовления корма из пшеницы или сои.

Загвоздка в том, что не существует больших и дешёвых источников биогаза. Так что завод в США будет использовать природный газ из обычного источника.

С другой стороны, в докладе сделан вывод о том, что способ получения корма компании Calysta снижает использование воды (на 77-98%) и земель по сравнению с другими методами производства корма. Некоторые считают, что это даже более важно, чем сокращение выбросов углерода. Нельзя ожидать от технологии, что она решит сразу все проблемы, добавляет Шоу.

Добавим, что ранее «Вести.Наука» рассказывали о том, что в Европе могут появиться фермы по производству съедобных насекомых.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *