Тверской Городской Форум

Статьи, обзоры и общение

Газоразрядная лампа

Устройство и характеристики разрядных ламп

Все основные детали лампы заключены в стеклянную колбу. Здесь происходит разряд электрических частиц. Внутри могут находиться как пары натрия или ртути, так и какой-либо из инертных газов.

В качестве газового наполнения применяют такие варианты, как аргон, ксенон, неон, криптон. Более популярны изделия, наполненные парообразной ртутью.

Основные узлы газоразрядной лампы это: конденсатор (1), стабилизатор тока (2), транзисторы переключающие (3), устройство подавления помех (4), транзистор (5)

Конденсатор отвечает за работу без мигания. Транзистор владеет положительным температурным коэффициентом, который обеспечивает мгновенный запуск ГРЛ без мерцания. Работа внутренней конструкции начинается после того, как в газоразрядной трубке пройдет генерация электрического поля.

В процессе в газе появляются свободные электроны. Соударяясь с атомами металла, они его ионизируют. При переходе отдельных из них, появляется избыточная энергия, порождающая источники свечения — фотоны. Электрод, являющийся источником свечения, находится в центре ГРЛ. Всю систему объединяет цоколь.

Лампа может излучать разные световые оттенки, которые может видеть человек — от ультрафиолетовых до инфракрасных. Чтобы это стало возможным, внутреннюю часть колбы покрывают люминесцентным раствором.

Сферы применения ГРЛ

Газоразрядные лампы востребованы в самых разных областях. Наиболее часто их можно встретить на городских улицах, в производственных цехах, магазинах, офисах, вокзалах, больших торговых центрах. Применяют их и для подсвечивания щитов с рекламой, фасадов зданий.

ГРЛ используют и в фарах автомобилей. Наиболее часто это лампы, отличающиеся высокой светоотдачей — неоновые модели. Некоторые автомобильные фары наполняют металлогалоидными солями, ксеноном.

Первые газоразрядные осветительные приборы для транспортных средств имели обозначение D1R, D1S. Следующие — D2R и D2S, где S указывает на прожекторную оптическую схему, а R — рефлекторную. Применяют лампочки ГР и при фотосъемках.

На фото импульсные ГРЛ, применяемые при фотосъемках: ИФК120 (а), ИКС10 (б), ИФК2000 (в), ИФК500 (г), ИСШ15 (д), ИФП4000 (г)

В процессе фотографирования эти лампы позволяют держать под контролем световой поток. Они компактные, яркие и экономичные. Отрицательным моментом является неумение визуально управлять светотенями, которые образует сам источник света.

В сельскохозяйственной сфере ГРЛ используют для облучения животных, растений, для стерилизации и обеззараживания продуктов. Для этой цели лампы должны иметь длину волн соответствующего диапазона.

Концентрация мощности излучения в этом случае также имеет большое значение. По этой причине наиболее подходящими являются изделия мощные.

Виды газоразрядных ламп

Делят ГРЛ на виды по типу свечения, такому параметру, как давление, применительно к цели использования. Все они образуют конкретный световой поток. Исходя из этого признака, они подразделяются на:

В первых из них источником света являются атомы, молекулы или их комбинации, возбуждаемые разрядом в газовой среде.

Во вторых – люминофоры, газовый разряд активизирует покрывающий колбу фотолюминесцентный слой, в итоге осветительный прибор начинает источать свет. Лампы третьего вида функционируют за счет свечения электродов, раскаленные от газового разряда.

Ксеноновые лампы, предназначенные для автомобильных фар, по светоотдаче и яркости превышают галогенные аналоги более чем в два раза

В зависимости от наполнения дугоразрядные приборы делят на ртутные, натриевые, ксеноновые, металлогалогенные лампы и другие. Исходя из давления внутри колбы происходит их дальнейшее разделение.

Начиная от значения давления от 3х104 и до 106 Па их относят к лампам высокого давления. В категории низкого приборы попадают при величине параметра от 0,15 до 104 Па. Больше чем 106 Па — сверхвысокого.

Вид #1 — лампы высокого давления

Отличаются РЛВД тем, что содержимое колбы подвержено высокому давлению. Для них характерно наличие значительного светового потока в сочетании с небольшими энергозатратами. Обычно это ртутные образцы, поэтому их наиболее часто применяют для уличного освещения.

Такие разрядные лампы обладают солидной светоотдачей и эффективной работой в условиях плохой погоды, но низкие температуры они переносят плохо.

Есть несколько базовых категорий ламп высокого давления: ДРТ и ДРЛ (ртутные дуговые), ДРИ — такие же, как и ДРЛ, но с йодидами и ряд модификаций, созданных на их основе. В этот же ряд входят также дуговые натриевые (ДНаТ) и ДКсТ — дуговые ксеноновые.

Первая разработка — модель ДРТ. В маркировке Д обозначает дуговая, символ Р — ртутная, на то, что эта модель трубчатая, указывает буква Т в маркировке. Визуально это прямая трубка, изготовленная из кварцевого стекла.

Ртутная газоразрядная лампа

С двух ее сторон — вольфрамовые электроды. Используют ее в облучательных установках. Внутри — немного ртути и аргона.

По краям лампы ДРТ есть хомутики с держателями. Объединяет их металлическая полоска, предназначенная для более легкого зажигания лампы

Подсоединение лампы в сеть выполняют последовательно с дросселем с использованием резонансной схемы. Световой поток лампы ДРТ состоит на 18% из ультрафиолетового излучения и на 15% — из инфракрасного. Такой же процент составляет видимый свет. Остальное — потери (52%). Основное применение — как надежный источник ультрафиолетового излучения.

Для освещения мест, где качество цветоотдачи не очень важно, применяют осветительные устройства ДРЛ (дуговые ртутные). Здесь практически нет ультрафиолетового излучения. Инфракрасное составляет 14%, видимое — 17%. На тепловые потери приходится 69%.

Особенности конструкции ламп ДРЛ позволяют зажигать их от 220 В без применения высоковольтного импульсного поджигающего устройства. Из-за того, что в схеме есть дроссель и конденсатор, колебания светового потока уменьшаются, коэффициент мощности возрастает.

Когда лампа подключена последовательно с дросселем, происходит тлеющий разряд между дополнительными электродами и основными соседними. Разрядный промежуток ионизируется в результате появляется разряд между главными вольфрамовыми электродами. Работа поджигающих электродов прекращается.

В состав лампы ДРЛ входит: колба (1), электроды главные (2), вспомогательные электроды (3), резисторы (4), горелка (кварцевая трубка) (5), цоколь (6)

Горелки ДРЛ в основном имеют четыре электрода — два рабочих, два поджигающих. Внутренность их наполнена инертными газами с добавкой в их смесь определенного количества ртути.

Металлогалогенные лампы ДРИ также относятся к разряду приборов высокого давления. Их цветовой КПД и качество цветопередачи выше, чем у предыдущих. На вид спектра излучения влияет состав добавок. Форма колбы, отсутствие дополнительных электродов и люминофорного покрытия — главные отличия ламп ДРИ от ДРЛ.

Схема, по которой включают ДРЛ в сеть, содержит ИЗУ — импульсное зажигающее устройство. В трубках ламп присутствуют составляющие, входящие в галогенную группу. Они повышают качество спектра видимого излучения.

Инертный газ в колбе МГЛ служит буфером. По этой причине электрический ток проходит через горелку даже тогда, когда она имеет небольшую температуру

По мере прогревания как ртуть, так и добавки испаряются, изменяя тем самым сопротивление лампы, световой поток, излучающий спектр. На основе приборов этого типа созданы ДРИЗ и ДРИШ. Первую из ламп используют в запыленных влажных помещениях, а также в сухих. Второй — освещают цветные телевизионные съемки.

Наиболее эффективными являются лампы ДНаТ— натриевые . Связано это с длиной излучаемых волн — 589 – 589,5 нм. Приборы натриевые высокого давления функционируют при величине этого параметра около 10 кПа.

Для разрядных трубок таких ламп применяется специальный материал — светопропускающая керамика. Силикатное стекло для этой цели непригодно, т.к. пары натрия очень опасны для него. Рабочие пары натрия, вводимого в колбу, обладают давлением от 4 до 14 кПа. Для них характерны небольшие потенциалы ионизации и возбуждения.

Электрические характеристики натриевых ламп зависимы от напряжения сети, продолжительности эксплуатации. Для продолжительного горения необходима пускорегулирующая аппаратура

Чтобы возместить потери натрия, неизбежно возникающие в процессе горения, необходим некоторый его избыток. Это порождает пропорциональную зависимость показателей давления ртути, натрия и температуры холодной точки. В последней происходит конденсация излишка амальгамы.

Когда лампа горит, на ее торцах оседают продукты испарения, что приводит к потемнению концов колбы. Процесс сопровождается изменением в сторону роста температуры катода, повышением давления натрия и ртути. В результате увеличивается потенциал и напряжение лампы. При монтаже ламп натриевых балласты от ДРЛ и ДРИ непригодны.

Вид #2 — лампы низкого давления

Во внутренней полости таких приборов находится газ под давлением более низким, чем внешнее. Разделяют их на ЛЛ и КЛЛ и применяют не только для освещения торговых точек, но и для домашнего обустройства. Люминесцентные лампы в этом ряду — наиболее популярны.

Преобразование энергии электричества в световую происходит в два этапа. Ток между электродами провоцирует излучение в ртутных парах. Основным составляющим лучистой энергии, появляющейся при этом, является коротковолновое УФ излучение. Видимый свет составляет близко 2%. Далее излучение дуги в люминофоре трансформируется в световое.

Маркировка люминесцентных ламп содержит как буквы, так и цифры. Первый символ — это характеристика спектра излучения и конструктивные признаки, второй — мощность в ваттах.

Расшифровка букв:

  • ЛД — люминесцентная дневного света;
  • ЛБ — белого света;
  • ЛХБ — так же белого, но холодного;
  • ЛТБС — теплого белого.

У некоторых приборов освещения спектральный состав излучения улучшен с целью получения более совершенной светопередачи. В их маркировке присутствует символ «Ц». Люминесцентные лампы снабжают помещения равномерным, мягким светом.

Преимущество ЛЛ ламп заключается в том, что они для создания одинакового с ЛН светового потока требуют мощности в несколько раз меньшей. Больший у них и срок эксплуатации, а спектр излучения намного благоприятнее

Поверхность излучения ЛЛ довольно большая, поэтому сложно управлять пространственным рассредоточением света. В нестандартных условиях, в частности, при большой запыленности, применяют лампы рефлекторные. В этом случае внутреннюю площадь колбы не полностью закрывает диффузный отражающий слой, а только на две третьих ее.

Люминофором покрывают 100% внутренней поверхности. Часть колбы, не имеющая рефлекторного покрытия, пропускает световой поток намного больший, чем такая же по объему трубка обычной лампы — около 75%. Распознать такие лампы можно по маркировке — в нее включена буква «Р».

В отдельных случаях основной характеристикой ЛЛ выступает цветовая температура Тц. Приравнивают ее к температуре черного тела, выдающего ту же цветность. По очертаниям ЛЛ бывают линейными, U-образными, в форме символа W, кольцевыми. В обозначение таких ламп входит соответствующая буква.

Наиболее популярны приборы, имеющие мощность 15 – 80 Вт. При светоотдаче 45 – 80 лм/Вт горение ЛЛ длится минимум 10 000 часов. На качество работы ЛЛ очень влияет окружающая среда. Рабочей для них считается наружная температура от 18 до 25⁰.

При отклонениях уменьшается как световой поток, так и эффективность светоотдачи, и напряжение зажигания. При низкой температуре шанс на зажигание приближается к нулю.

Пускорегулирующий аппарат КЛЛ намного компактней, чем у люминесцентной лампы. С помощью ЭПРА свечение стало более ровным, а гудение исчезло

К лампам низкого давления принадлежат и люминесцентные компактные — КЛЛ.

Устройство их аналогично обычным ЛЛ:

  1. Проходит высокое напряжение между электродами.
  2. Воспламеняются пары ртути.
  3. Возникает ультрафиолетовое свечение.

Люминофор внутри трубки делает ультрафиолетовые лучи невидимыми для человеческого зрения. Доступным становится только видимое свечение. Компактное исполнение прибора стало возможным после изменения состава люминофора. КЛЛ, как и обычные ЛН, имеют разную мощность, но показатели первых значительно ниже.

Данные о мощности КЛЛ заложены в маркировку светового прибора. Там же есть сведения о виде цоколя, цветовой температуре, виде ЭПРА (встроенный или внешний), индексе цветопередачи

Измерение цветовой температуры происходит в кельвинах. Значение 2700 – 3300 К указывает на цвет теплый желтого оттенка. 4200 – 5400 — белый обычный, 6000 – 6500 — белый холодный с синевой, 25000 — сиреневый. Регулировку цветности осуществляют путем изменения составляющих люминофора.

Индекс цветопередачи дает характеристику такому параметру, как идентичность естественности цвета со стандартом, приближенным по максимуму к солнечному. Абсолютно черный — 0 Rа, наибольшая величина — 100 Rа. Осветительные приборы КЛЛ входят в диапазон от 60 до 98 Rа.

Лампы натриевые, относящиеся к группе низкого давления, обладают высокой температурой максимально холодной точки — 470 К. Более низкая не сможет способствовать сохранению требуемого уровня концентрации паров натрия.

К своему пику резонансное излучение натрия подходит при температуре 540 – 560 К. Эта величина соизмерима с давлением испарений натрия 0,5 – 1,2 Па. Светоотдача ламп этой категории самая высокая по сравнению с другими осветительными приборами общего применения.

Положительные и отрицательные стороны ГРЛ

Встречаются ГРЛ как в профессиональной аппаратуре, так и в приборах, предназначенных для научных исследований.

Как главные преимущества осветительных приборов этого вида обычно называют такие их характеристики:

  • Уровень светоотдачи высокий. Этот показатель не очень снижает даже толстое стекло.
  • Практичность, выражающаяся в долговечности, что позволяет применять их для уличного освещения.
  • Устойчивость в сложных климатических условиях. До первого понижения температуры их используют с применением обычных плафонов, а зимой — со специальными фонарями и фарами.
  • Доступная стоимость.

Минусов у этих ламп не очень много. Неприятной особенностью является довольно высокий уровень пульсирования светового потока. Вторым веским недостатком является сложность включения. Для устойчивого горения и нормальной работы им просто необходим балласт, ограничивающий напряжение для необходимых приборам пределов.

Третий минус заключается в зависимости параметров горения от достигаемой температуры, которая опосредованно влияет на давление рабочего пара в колбе.

Поэтому большинство газоразрядных приборов набирает стандартные характеристики горения спустя некоторый временной период после включения. Излучающий спектр у них ограничен, поэтому цветопередача как у ламп высокого напряжения, так и низкого неидеальна.

В таблице представлены основные сведения о самых популярных лампах ДРЛ (дуговых ртутных люминесцентных) и осветительном приборе натриевом. ДРЛ с четырьмя электродами имеет большую светоотдачу, чем с двумя

Работа приборов возможна только в условиях переменного тока. Активируют их при помощи балластного дросселя. Для разогрева необходимо какое-то время. Из-за содержания ртутных паров, они не совсем безопасны.

Выводы и полезное видео по теме

Видео #1. Сведения о ГЛ. Что это такое, принцип работы, плюсы и минусы в следующем видеоролике:

Видео #2. Популярно о люминесцентных лампах:

Несмотря на появление все более совершенных осветительных приборов, газоразрядные лампы не теряют своей актуальности. В некоторых сферах они просто незаменимы. Со временем ГРЛ обязательно найдут новые области применения.

Также слово является ответом на вопросы:

  • Первый инертный газ, для которого были получены настоящие химические соединения.
  • Инертный газ.
  • «Чужой» среди благородных газов.
  • Самый тяжёлый газ из нерадиоактивных.
  • Химический элемент, Xe.
  • Какой газ имеет наибольшее число изотопов?
  • Инертный газ, применяемый в мощных осветительных приборах.
  • Химический элемент, инертный газ.
  • Химический элемент, один из инертных газов.
  • Инертный благородный газ
  • Химический элемент, инертный газ
  • Инертный газ
  • «чужой» среди благородных газов
  • Самый тяжелый газ из не радиоактивных
  • Химический элемент, Xe
  • Благородный газ
  • Газ в ярких фарах
  • Наполнитель ярких фар
  • Газ в крутых фарах
  • Газ, Xe
  • Сосед йода по таблице
  • «Xe» для химика
  • Инертный газ для ламп освещения
  • Преемник йода в таблице
  • До цезия в таблице
  • Между йодом и цезием в таблице
  • Предшественник цезия в таблице
  • Газ для ламп освещения
  • №54 согласно Менделееву
  • В таблице Менделеева он под №54
  • Последователь йода в таблице
  • Следом за йодом в таблице
  • Один из инертных газов
  • Газ для газоразрядных ламп
  • Предтеча цезия в таблице
  • Газ, соблюдающий нейтралитет
  • В таблице он перед цезием
  • Вслед за йодом в таблице
  • Перед цезием в таблице
  • Коллега аргона и криптона
  • «чужой» среди газов
  • Газ для автомобильных фар
  • Газ «голубых кровей»
  • Сотрудник неона, криптона и аргона
  • Последыш йода в таблице
  • Пятьдесят четвертый инертный газ
  • Газ в автомобильных фарах
  • Что за химический элемент Xe?
  • Химический элемент под номером пятьдесят четыре
  • Газ с наибольшим числом изотопов
  • После йода в таблице
  • Газ из таблицы
  • Инертный газ номер пятьдесят четыре
  • Пятьдесят четвертый в таблице химических элементов
  • Химический элемент
  • Менделеев назначил его 54-м
  • 54-я ячейка химической таблицы
  • 54-й в череде химических элементов
  • Химическ.

    Конструктивные особенности изделий

    Под газоразрядными лампами следует понимать альтернативный традиционным источникам света компактный прибор, главная особенность которого — излучение света в диапазоне, который человек способен охватить взглядом. Чтобы понять принцип работы устройства, нужно разобраться с его конструктивными особенностями.

    Основа изделия — это стеклянная колба. В нее под определенным давлением закачивают пары металла, но чаще газ. Дополнительные элементы — электроды по краям стеклянной колбы.

    Понимая особенности строения изделия, можно представить себе принцип его работы. Построен он на действии электрического разряда, который пропускает через себя стеклянная колба с электродами. Ядро колбы — главный электрод. Под ним работает токоограничительный резистор. В то время как электрический разряд проходит через колбу, она начинает излучать свет.

    Кроме перечисленных выше электродов и колбы, лампа имеет цоколь. Именно он позволяет расширить сферу использования изделия. Его можно вкручивать в осветительные приборы разного назначения.

    Обратите внимание! Чаще всего такие устройства применяют в создании именно уличного освещения. Ими оснащают фонари, а также фары в автомобилях, как уже было отмечено выше.

    Разновидности изделий

    Выделяют разные виды газоразрядных ламп в зависимости от типа свечения, величины давления.

    Если сравнивать потоки светового излучения, создаваемые изделиями, то газоразрядные лампы можно разделить на:

    • люминесцентные;
    • газосветные;
    • электродосветные.

    Первые отличаются светом, поступающим наружу за счет слоя люминофора, которым покрыта лампа, активирующегося при газовом разряде.

    Газосветные светят за счет света самого газового разряда, а электродосветные освещают с помощью свечения электродов под воздействием газового разряда.

    По величине давления изделия можно разделить на лампы высокого и низкого давления.

    Первые могут дополнительно разделяться на дуговые ртутные лампы (ДРЛ), а также на дуговые ксеноновые трубчатые (ДКсТ), дуговые ртутные с йодидами (ДРИ) и дуговые натриевые трубчатые (ДНат). Главное их отличие — функционирование без пускорегулирующего устройства. Именно такие лампы чаще всего освещают улицы, дома, автомобили и стенды наружной рекламы.

    Стоит обратить внимание на тот факт, что лампы высокого давления газоразрядного типа используются чаще всех остальных. Натриевые и ртутные модели просто незаменимы в создании ярких баннеров рекламы, освещающих улицы в ночное время. Жилые и офисные помещения с помощью таких ламп освещают нечасто.

    А вот что такое газоразрядные лампы с низким давлением? Они классифицируются на ЛЛ и КЛЛ. Эти лампочки с успехом выполняют функции ранее используемых ламп накаливания. Именно их удобнее и практичнее всего использовать для создания не только уличного, но и домашнего освещения.

    Среди ламп низкого давления наиболее популярными считаются люминесцентные. Такие лампы для уличного освещения подходят как нельзя лучше. Вкручивая их в фонари, можно добиться высокой эффективности работы за счет мощного преобразования электроэнергии в световую.

    Как построена работа лампочки

    Рассмотрим принцип работы газоразрядных ламп подробнее, основываясь на их конструктивных особенностях.

    Начнем с того, что лампа газоразрядная генерирует свет за счет создаваемого в теле стеклянной колбы электрического разряда. Газ, закачиваемый в колбу под давлением, лежит в основе освещения. Для создания уличного освещения чаще всего применяют инертные газы:

    • аргон;
    • неон;
    • ксенон и другие.

    Практикуется использование и смесей газов в разных пропорциях. Часто в состав включают натрий или ртуть. На основании их включения натриевая газоразрядная лампа или ртутная и носят свои названия.

    Обратите внимание! Ртутные изделия в наши дни более актуальны, чем натриевые. Они используются для создания уличного и домашнего освещения.

    Оба варианта лампочек могут считаться металлогалогенными источниками света. Сразу после генерации электрического поля при подаче питания газ и свободные электроны в колбе ионизируются. Это приводит к контакту вращающихся на верхних уровнях атомов электронов с остальными электронами атомов металла, что в свою очередь вызывает их переход к внешним орбиталям и конечному появлению энергии — свечению.

    Стоит помнить о том, что свечение, получаемое таким образом, может быть самым разным, начиная от ультрафиолетового и заканчивая инфракрасным. Для экспериментов со свечением используют цветную люминесцентную краску для обработки внутренней части колбы. Цветные стенки колбы помогают ультрафиолетовому излучению приобрести видимый цветной свет.

    Плюсы и минусы изделий

    Рассмотрим достоинства и недостатки газоразрядных ламп с анализом их основных характеристик.

    К основным преимуществам изделий можно отнести следующие моменты:

    1. Лампочки отличаются высоким уровнем светоотдачи даже при условии использования плафонов из толстого стекла.
    2. Лампы достаточно практичны, особенно, если сравнивать их с обычными лампочками накаливания. В среднем изделие прослужит от 10 тысяч часов, поэтому является особенно незаменимым в создании качественного и долговечного уличного освещения.
    3. Изделия демонстрируют повышенный уровень устойчивости, особенно ртутная газоразрядная лампа в условиях сложного климата. Их можно использовать для уличного освещения до первых заморозков в комплекте с обычными плафонами и в зимнее время при условии контакта со специальными фарами и фонарями.
    4. Стоимость изделий доступна и приемлема.
    5. Лампочки с таким устройством не нуждаются в дорогих комплектующих и могут работать без дополнительной осветительной затратной аппаратуры.
    6. Схема подключения изделий проста и понятна, поэтому с монтажом справится каждый своими руками.

    Достоинства рассмотрели, теперь назовем минусы. Их немного, но о них также нужно знать:

    1. Газоразрядные лампы низкого давления и высокого давления не отличаются идеальной цветопередачей. Все дело в спектре лучей, весьма ограниченном в этих изделиях. Под светом таких лампочек достаточно непросто рассмотреть цвета предметов, поэтому в уличном и автомобильном освещении они наиболее приемлемы.
    2. Работают изделия исключительно при условии наличия переменного тока.
    3. Для активации лампочек потребуется балластный дроссель.
    4. Чтобы изделие заработало, кроме тока ему потребуется увеличенное время для разогрева.
    5. Лампочки сложно назвать полностью безопасными из-за возможного содержания в них паров ртути.
    6. Световой поток, излучаемый лампочками, имеет неприятную особенность — повышенный уровень пульсации.

    Что касается установки, то она не представляет каких-либо сложностей, как уже было отмечено. Процесс аналогичен монтажу стандартных лампочек накаливания.

    Область применения

    За счет конструктивных особенностей и уникального принципа работы, а отчасти и благодаря доступности таких комплектующих, как конденсаторы для газоразрядных ламп, изделия сегодня более чем востребованы, причем в самых разных сферах жизнедеятельности человека.

    Чаще всего свет от изделий можно увидеть:

    • на улицах городов и сел исходящим от фонарей;
    • в магазинах и производственных зданиях, торговых центрах и офисах, вокзалах и аэропортах;
    • на пешеходных дорогах и в подсветке парков, скверов, фонтанов;
    • на рекламных щитах;
    • на фасадах зданий кинотеатров, концерт-холлов в комплекте с дополнительным оборудованием, способным увеличивать эффект от свечения.

    Совершенно отдельным пунктом стоит отметить использование такого рода лампы для авто в фарах. Чаще всего здесь применяются неоновые лампы с высоким уровнем интенсивности света. Некоторые современные марки ТС уже оснащены фарами, заполненными ксеноном и металлогалоидными солями.

    Обратите внимание на маркировку ламп для автомобильных фар. Так, например, D1R и D1S — это первое поколение газоразрядных лам, связанных с модулем зажигания.

    Лампы второго поколения имеют маркировку D2R и D2S, где R — это изделие для рефлекторной оптической схемы, S — прожекторной.

    Нельзя не упомянуть и о роли лампочек такого типа в современной фотосъемке. Постановка света для создания качественной фотографии позволяет ощутить главные преимущества источника.

    Импульсные газоразрядные лампы для освещения позволяют фотографировать с постоянным контролем светового потока. Они более яркие, экономичные, имеют компактные размеры. Из минусов использования изделий в этой сфере стоит отметить неспособность визуального контроля светотени, образуемой от источника света такого рода на фотографическом объекте в процессе.

    Что нужно знать об индикаторных видах ламп

    В качестве альтернативы малогабаритным лампам накаливания использование газоразрядных индикаторных ламп (лампы ин) выглядит более чем оправдано. Такие лампы работают за счет свечения закачанного между электродами газа, помещенного в стеклянную колбу. Какого цвета газ использовали для наполнения колбы, такого цвета получится конечное свечение.

    Самые популярные линейные газоразрядные индикаторы — на основе неона. Конструкции можно встретить в елочных гирляндах, не редкость и светильник с наполнением такого рода —лампочкой газоразрядного типа миниатюрных размеров.

    Газоразрядные индикаторы отличаются практичностью и экономичностью работы, особенно по сравнению с обычными лампочками. Они имеют невысокий уровень внутреннего сопротивления. Одиночные варианты чаще всего используют для подсвечивания надписей на стекле или пластике, также индикаторы подходят для подсветки символических пиктограмм.

    Важно! Газоразрядные индикаторные лампы могут воспроизводить как битовую информацию, так и десятичные цифры.

    В заключение отметим, что невозможно искусственно увеличить значение использования газоразрядных ламп в жизни современного человека.

    Принцип работы газоразрядной лампы

    Газоразрядная лампа является источником свечения, который генерирует свет, создавая электрический разряд через ионизированный газ. Как правило, эти лампы используют такие газы, как:

    • аргон,
    • неон,
    • криптон,
    • ксенон, а также смеси этих газов.

    Много ламп заполнены дополнительными газами, такими как натрий и ртуть, в то время как другие используют металлогалогенные добавки.

    При подаче питания на лампу, электрическое поле генерируется в трубке. Это поле образует включения свободных электронов в ионизированный газ, т.е. обеспечивает столкновение электронов с газом и атомами металла. Некоторые электроны, вращающиеся вокруг этих атомов, обеспечивают столкновения в более высокое энергетическое состояние. В таких случаях высвобождается энергия фотонов. Этот свет может быть каким угодно от инфракрасного видимого и до ультрафиолетового излучения. Некоторые лампы имеют люминесцентное покрытие на внутренней стороне колбы для преобразования ультрафиолетового излучения в видимый свет.

    Некоторые лампы трубчатой формы содержат специальный источник бета-излучения, чтобы обеспечить ионизацию газа внутри. В этих трубах, тлеющий разряд, обеспеченный катодом, сведен к минимуму, в пользу так называемого положительного столба энергии. Самый яркий пример такой технологии – энергосберегающие неоновые лампы, газоразрядные импульсные ифк и флуоресцентные.

    Газоразрядные лампы и виды катодов

    Многие слышали термин газоразрядные люминесцентные лампы с холодным катодом CCFL и приборы для освещения с горячим катодом. Но в чем разница, какая их маркировка и какие выбрать?

    С горячим катодом

    В горячие катоды генерирует электроны сам электрод с термоэлектронной эмиссией. Именно поэтому они еще называются термоэлектронными катодами. Катод обычно представляет собой электрическую нить из вольфрама или тантала. Но теперь они еще покрываются слоем эмиссионного материала, что может производить больше меньше тепла и света, тем самым увеличивая эффективность и световой поток газоразрядной лампы. В некоторых случаях, когда жужжание переменного тока является проблемой, нагреватель электрически изолирован от катода. Этот метод широко используют газоразрядные металлогалогенные лампы (hpi-t plus, deluxе, hid-8) и светильники низкого давления.

    Источники света с горячими катодами производят значительно большее количество электронов, чем холодные катоды с той же площадью поверхности. Их используют индикаторные устройства, микроскопы, и даже такие лампы применяют для модернизации электронных пушек.

    С холодным катодом

    С холодным катодом не производится термоэлектронная эмиссия. Высоковольтные лампы в данном случае, работают на электродах, генерирующих сильное электрическое поле (допустим, марки make), которое ионизирует газ. Поверхность внутри трубки способна производить вторичные электроны, и при этом свести их «падение» к минимуму. Некоторые трубы содержат специальное заземление, которое улучшает эмиссию электронов.

    Другой метод работы холодных световых приборов основан на генерации свободных электронов без термоэлектронной эмиссии, за счет полевой электронной эмиссии. Полевая эмиссия происходит в электрических полях, которые создают очень высокое напряжение. Этот метод используется в некоторых рентгеновских трубках, микроскопах, работающих за счет электрических полей, а также его применяют газоразрядные натриевые лампы (lhp, днат 400 5, днат 70, днат 250-5, днат-70, hb4).

    Термин «холодный катод» не означает, что он остается в температуре окружающей среды все время. Рабочая температура катода может увеличиваться в некоторых случаях. Например, при использовании переменного тока, из-за чего электроды поменялись местами – стали катод стал анодом. Некоторые электроны также могут вызвать локализацию тепла. Например, люминесцентные лампы: после запуска, вольфрамовая проволока холодная, лампа работает с холодным катодом и явление, описанное выше, используется для нагрева нити. Когда она достигла нужного уровня света, светильник работает нормально, как с горячим катодом. Подобное явление могут демонстрировать некоторые газоразрядные ксеноновые лампочки дрл (d2s, h4 категории d).

    Холодный катод устройства требует высокого напряжения, но при этом высоковольтный источник питания не требуется. Это часто явление называется CCL инвертором.

    Газоразрядные лампы.

    Работа инвертора заключается в создании высокого напряжения для организации начального пространственного заряда и первой электрической дуги тока в трубке. Когда это происходит, внутреннее сопротивление трубки уменьшается и увеличивает ток. Преобразователь реагирует на такие перепады, и если температура превышает норму – отключается. Чаще всего такие системы устанавливают для уличного освещения.

    Лампы холодного излучения часто встречаются в электронных устройствах. CCFLs (с холодным катодом люминесцентные лампы) используются как диодные лампочки для компьютеров, модемов, мультиметров, газоразрядных индикаторов ин-14, ин 18 и нв 3, и прочего. Кроме того, они широко применяются в качестве ЖК-подсветки. Еще одним примером широкого использования является трубы Nixie.

    Перед тем, как купить какое-либо устройство, нужно обязательно изучить все его характеристики.

    Разрядные лампы высокого давления

    Эти лампы содержат сжатый газ внутри трубы, находящийся в более высоком давлении, чем атмосферное давление. Например, лампы газоразрядные высокого напряжения это – металлогалогенные (osram hqi-t 2000w/n/sn), натриевые (lu250/t/40, philips филипс son-t 1000w\220 e-40, msd 575, msd250 и gbm 150) и ртутные лампы дри или дрв (дрт-240, ml 250/е40, ).

    Лампы низкого давления

    Эти лампы содержат газ внутри трубы, находящийся в более низком давлении, чем атмосферное. Классические люминесцентные лампы way относятся к этой категории, хорошо известные сейчас неоновые лампы, а также натриевые лампы низкого давления, которые используются для уличного освещения. Все они имеют очень хорошую эффективность, но наиболее эффективными среди всех газоразрядных ламп являются натриевые лампы son. Проблема этого типа ламп (с цоколем r7s) является то, что она производит только почти монохроматический желтый свет (исключение — бездроссельные люминесцентные лампы).

    Лампы высоко-интенсивного разряда

    В этой категории, находятся лампы, которые излучают свет при помощи электрической дуги между электродами (е-27). Электроды обычно представлены вольфрамовыми электродами, которые находится внутри полупрозрачного или прозрачного материала. Есть много различных примеров HID (High Intensity) ламп, продажа которых осуществляется у нас в стране, таких как галогеновые (ipf h4 х-41, мн-кх7s-150вт, hq-т), ксеноновые дуговые, и светильники сверхвысокой производительности (UHP).

    Минусы в работе разрядных ламп

    Любые устройства имеют свои недостатки, и газоразрядные светильники не стали исключением:

    • если напряжение сети меньше, чем 220 В (допустим, 100), то металогалогенные лампы (hmi-1200), не будут работать;
    • запрет на использование в учебных заведениях;
    • галогеновые лампы во время работы становятся слишком горячими. Они представляют определенную пожароопасность, и кроме того требуют очень щепетильного ухода – 1 капелька жира на поверхности может заставить её взорваться;
    • неоновые лампы излучают свет (особенно, если серия УФ, модель н4), который вреден для глаз при долгом контакте.

    Широкое применение получили автомобильные газоразрядные лампы высокой интенсивности – и неоновые, также для авто иногда применяется диодное освещение (их цена несколько ниже). Разряд автомобильной фары заполнен смесью газообразного ксенона и металло-галоидных солей (как например использует Тойота Королла — d2r для toyota estima 2000, или БМВ 5, для Опеля astra j)). Света создается путем удара дуги между двумя электродами. Лампа имеет встроенный воспламенитель.

    Для освещения промышленных помещений (гу-23а, лд30, тн-0, 3, гу26а), уличных площадей (olympiad 250, Сильвиана производства Украина), билбордов, фасадов зданий, также газоразрядные лампы высокого давления дневного света в квартирах и домах (гост 500-9006-083) и в ПРА.

    Монтаж и схема подключения точно такие же, как и при установке простых ламп накаливания.

    Типы газоразрядных приборов

    В настоящее время газоразрядные приборы имеют ограниченное применение. Поэтому рассмотрим весьма кратко их особенности и области применения. Пред­варительно обратим внимание на то, что, рассматривая электрический разряд в газе, мы имели в виду гипотетическую модель. Реально в конкретном газоразряд­ном приборе используется какой-либо один вид электрического разряда. Простейшим газоразрядным прибором является неоновая лампа — двухэлектродный прибор, работающий в режиме аномального тлеющего разряда. Неоновая лампа служит для индикации наличия напряжения или электромагнитного поля. При переменном напряжении низкой частоты анод и катод неоновой лампы попеременно меняют свои функции. При высокочастотном напряжении в неоновой лампе возникает высокочастотный разряд. Особенность этого разряда состоит в том, что электроны, возникшие в результате внешней ионизации, совершая коле­бательные движения при быстрой перемене знаков потенциала на электродах, ионизируют газ, который начинает светиться, а образовавшиеся малоподвижные ионы не успевают менять направление своего движения и образуют объемный положительный заряд. При этом эмиссия с поверхности электродов отсутствует.

    Стабилитроны тлеющего разряда служат для стабилизации напряжения. Они работают в режиме нормального тлеющего разряда, в котором величина напря­жения на стабилитроне слабо зависит от величины тока. Катод стабилитрона вы­полнен в виде цилиндра, внутренняя поверхность которого специальным обра­зом обработана, чтобы повысить коэффициент вторичной электронной эмиссии. Для облегчения зажигания тлеющего разряда на внутренней поверхности цилин­дра имеется выступ, вокруг которого происходит шнурование разряда. Анодом стабилитрона является никелевый стержень, расположенный вдоль оси симмет­рии анода. Напряжение стабилизации определяется материалом катода, типом и давлением газа. Практически оно составляет порядка 100-200 В.

    Тиратроны тлеющего разряда помимо катода и анода содержат сетку, которая служит для управления напряжением зажигания. На сетку подается небольшое положительное напряжение, под воздействием которого возникает вспомогатель­ный темный разряд. При увеличении анодного напряжения возникает тлеющий разряд между катодом и анодом. Чем больше величина тока вспомогательного разряда, тем меньше величина напряжения возникновения разряда в анодной цепи. Объясняется это тем, что с ростом тока сетки в промежутке между катодом и сеткой увеличивается количество ионов и электронов, благодаря чему облег­чается возникновение основного разряда. Зависимость напряжения зажигания основного разряда от тока сетки называется пусковой характеристикой. После зажигания основного разряда сетка теряет свои управляющие свойства, то есть изменение потенциала сетки не влияет на анодный ток и анодное напряжение. Это объясняется тем, что положительно заряженная сетка притягивает к себе элект­роны, которые образуют около поверхности сетки отрицательно заряженный слой, нейтрализующий действие положительного заряда сетки. При увеличении или уменьшении положительного потенциала сетки увеличивается или уменьша­ется количество электронов, притягиваемых сеткой, и по-прежнему действие ее заряда будет нейтрализоваться соответственно изменяющимся зарядом электрон­ной оболочки. Если же на сетку подать отрицательное напряжение, то она притя­нет положительные ионы, которые создают вокруг нее положительно заряженный слой, нейтрализующий действие отрицательного заряда сетки. Помимо односе-точных тиратронов существуют двухсеточные. Б таких тиратронах управляющей является вторая сетка, более удаленная от катода. На первую сетку подается по­стоянное положительное напряжение, и в цепи этой сетки все время существует небольшой ток подготовительного разряда. На второй сетке напряжение ниже, чем на первой. Поэтому тормозящее поле между сетками не позволяет электро­нам проникнуть к аноду. Если же на вторую сетку подать импульс положитель­ного напряжения, то электроны проникнут сквозь вторую сетку к аноду и возник­нет тлеющий разряд. Из изложенного следует, что тиратроны обладают двумя устойчивыми состояниями: проводящим и непроводящим. Поэтому он находит применение в импульсных схемах электронной автоматики. При этом свечение газа обеспечивает индикацию состояния схемы.

    Для визуальной цифровой (или буквенной) индикации электрических сигналов применяются знаковые индикаторы тлеющего разряда. Такие индикаторы содер­жат несколько катодов, изготовленных из проволоки, выгнутой в виде цифр или других знаков, и расположенных один за другим. Анод сделан из проволочной сетки. При подаче напряжения между анодом и одним из катодов около катода возникает свечение газа, то есть становится видимым светящийся знак.

    Для счета импульсов в десятичной системе с одновременной индикацией пока­заний предназначены декатроны. Они содержат один цилиндрический анод, вокруг которого в виде кольца расположены штыри-катоды. При поочередной по­даче на катоды отрицательных импульсов напряжения тлеющий разряд перено­сится от одного катода к другому. При этом через купол баллона наблюдается пе­ремещение по окружности светящейся точки. После каждых десяти импульсов схема управления выдает импульс на управляющую схему второго декатрона, ко­торый, в свою очередь, после десяти входных импульсов выдает запускающий импульс на следующий декатрон и т. д. При этом первый декатрон считает число единиц, второй — число десятков и т. д.

    Для получения сложных изображений разработаны газоразрядные панели (ГРП). Они имеют много конструктивных разновидностей. Однако общим конструктив­ным признаком для большинства из них является наличие двух ортогональных прозрачных полосковых систем электродов (катодных и анодных), расположен­ных на стеклянных пластинах, отделенных друг от друга диэлектрической мас­кой с системой отверстий, шаг которых равен шагу полосковых электродов, то есть ГРП представляет собой совокупность большого числа двухэлектродных газораз­рядных приборов, работающих независимо друг от друга. При подаче напряже­ния между каким-либо иолосковым катодом и полосковым анодом через отвер­стие в диэлектрический маске возникает тлеющий разряд, наблюдаемый в виде светящейся точки. При подаче по определенному закону напряжения на несколь­ко катодов и анодов можно посредством точечного растра воспроизвести любую фигуру. ГРП могут давать и многоцветные изображения. Для этого надо на бо­ковые или торцевые стенки ячеек нанести покрытия из люминофоров, дающие свечение определенного цвета. Располагая рядом ячейки с покрытиями из люми­нофоров, дающих основные цвета (синий, зеленый, красный), можно получить цветное изображение.

    Для защиты линий связи, обмоток выходных трансформаторов и других элемен­тов электрических цепей от перенапряжений применяются разрядники. Их дей­ствие основано на резком увеличении проводимости прибора вследствие воз­никновения тлеющего или дугового разряда между электродами. После снятия перегрузок разрядники вновь восстанавливают исходное высокое сопротивление.

    Для защиты входа приемника радиолокационной станции от перегрузки при из­лучении передатчиком мощного импульса применяют резонансные разрядники СВЧ. Такие разрядники являются частью объемного резонатора, настроенного на частоту излучения передатчика, и включаются в высокочастотную линию, иду­щую от антенного фидера к входу приемника, на расстоянии от начала линии, кратном нечетному числу четвертей длины волны. При излучении передатчиком мощного радиоимпульса в резонаторе возбуждаются мощные колебания. На емкости, которую образуют электроды разрядника, развивается большое напряжение, в результате чего возникает высокочастотный разряд, сопротивление разрядника резко уменьшается и он практически закорачивает резонатор, вследствие чего излучаемый импульс передатчика не попадает на вход приемника. Принимаемый отраженный импульс не в состоянии зажечь разряд и проходит на вход приемника.

    Среди приборов дугового разряда следует отметить газотроны и тиратроны, дли­тельное время применявшиеся для выпрямления высоких напряжений и больших токов. Газотрон представляет собой мощный диод с термоэлектрическим катодом, наполненный инертным газом или парами ртути. В отличие от вакуумного диода у газотрона отсутствует отрицательный объемный заряд около катода. Он ком­пенсируется положительными ионами. Поэтому в газотронах можно получить значительный анодный ток при небольшом анодном напряжении. В этом заклю­чается основное преимущество газотрона перед вакуумным диодом. Тиратроны дугового разряда отличаются от газотронов наличием сетки, предназначенной для управления напряжением зажигания. Вместе с тем следует иметь в виду, что в настоящее время вакуумные диоды, газотроны и тиратроны практически полнос­тью вытеснены более долговечными, надежными и удобными в эксплуатации по­лупроводниковыми выпрямителями.

    Контрольные вопросы

    1. Какие разновидности электронных ламп вам известны?

    2. Что такое околокатодный процесс?

    3. Что такое процесс токораспределения?

    4. Что такое динатронный эффект?

    5. Что такое наведенный ток?

    6. Нарисуйте и сравните выходные характеристики триода и пентода.

    7. Какими параметрами характеризуются электронные лампы и как они определяются по характеристикам?

    8. Как устроен и работает клистрон?

    9. Как работает лампа бегущей волны?

    10. Расскажите об устройстве и работе электронно-лучевых трубок.

    11. Какие физические процессы протекают в газоразрядных приборах?

    12. Какие разновидности газоразрядных приборов существуют и какова область их применения?

    Глава 11 Введение в квантовую электронику

    Квантовая электроника — это область науки и техники, занимающаяся иссле­дованием принципов действия, конструированием и применением генераторов, усилителей, преобразователей частоты электромагнитного излучения, действие которых основано на вынужденном излучении фотонов атомами, ионами и мо­лекулами. Еще в 1900 году М. Планк показал, что свет излучается не непрерыв­но, а отдельными порциями, которые он назвал квантами, впоследствии они по­лучили название фотонов.

    Известно, что под воздействием света или в результате нагрева, а также при столк­новении внешнего электрона с атомом происходит возбуждение атомов, то есть переход электронов на более высокие энергетические уровни, на которых они на­ходятся примерно 10-8 с, после чего возвращаются на исходный уровень, излучая фотоны, энергия которых равна разности энергетических уровней. Такие перехо­ды обычно происходят случайно (спонтанно). В квантовых приборах создаются такие условия, при которых возврат электронов на исходные уровни происходит синхронно и синфазно. При этом возникает вынужденное (когерентное) излуче­ние света.

    В 50-х годах XX века были созданы устройства, которые позволили усиливать электромагнитные волны сантиметрового диапазона на основе такого вынужденно­го излучения. Эти устройства получили название мазеров. Слово «мазер» проис­ходит от первых букв английского названия Microwave Amplification by Stimulated Emission of Radiation — усиление микроволн за счет вынужденного излучения. За работы по созданию мазеров советским ученым Н. Г. Басову и А. М. Прохо­рову, а также американскому ученому Ч. X. Таунсу в 1964 году была присуждена Нобелевская премия. В 1960 году американским физиком Т. Г. Мейманом был создан квантовый прибор, работающий в оптическом диапазоне, — лазер (Light Amplification by Stimulated Emission of Radiation — усиление света за счет вы­нужденного излучения). Лазеры также называют оптическими квантовыми гене­раторами (ОКГ).

    Лазерное усиление

    Процесс лазерного усиления упрощенно состоит в следующем. Под воздействи­ем внешнего фотона на атом, находящийся в возбужденном состоянии, происхо­дит переход возбужденного атома в другое энергетическое состояние; этот пере­ход сопровождается испусканием нового фотона, энергия которого равна энергии внешнего фотона. Если создать систему возбужденных атомов и пропускать через нее оптическое излучение, то возможно усиление излучения, которое назы­вается лазерным усилением.

    Рассмотрим процесс возникновения лазерного усиления подробнее, считая, что за счет энергии внешнего воздействия (так называемой энергии накачки) Епчасть электронов с нижних равновесных уровней Е1, перешла на более высокие уровни Е3, а затем оказалась на уровне возбуждения Е2(рис. 11.1). Возвращение этих элект­ронов с уровня Е2на уровень E1сопровождается испусканием фотонов с частотой

    (11.1)

    Такой переход электронов не связан с вынуждающими фотонами и приводит к возникновению спонтанного (некогерентного) излучения (переходы 1-3 на ри­сунке), при котором момент испускания и направление вектора поляризации каж­дого фотона случайны, а результирующий поток излучения описывается средне­статистическими параметрами.

    Одновременно со спонтанными переходами существует вероятность вынужден­ных переходов из энергетического состояния Е2в Е1(переходы 4 и 5 на рис. 11.1). Такие переходы называют лазерными. Они связаны с действием вынуждающих фотонов, при этом все активные атомы излучают практически одновременно и так, что испускаемые фотоны неотличимы от тех, которые их вызвали, то есть происходит когерентное (вынужденное) излучение, совпадающее но направле­нию, частоте, фазе и поляризации с вынуждающим излучением.

    Вынужденные переходы возникают под действием внешнего электромагнитного поля, частота которого совпадает или близка к частоте перехода, определяемой фор­мулой (11.11). Следует заметить, что на вынужденный переход не затрачивается энергия внешнего поля, которая является лишь стимулятором процесса. Вынуж­денные переходы (как и спонтанные) носят статистический характер.

    Помимо спонтанных и вынужденных переходов существуют переходы из Е1в бо­лее высокие энергетические состояния, сопровождающиеся поглощением энергии (переход 6 на рисунке). Лазерное усиление возможно лишь в том случае, если число вынужденных переходов больше числа спонтанных переходов и переходов, связанных с поглощением вынуждающего излучения. Определим условия, при которых возможно лазерное усиление.

    Количество вынужденных переходов за время t приближенно можно выразить в виде

    (11.2)

    где В21 — вероятность вынужденного перехода;

    Qвын — энергия вынуждающего излучения;

    N2— концентрация атомов в энергетическом состоянии Е2.

    Количество спонтанных переходов от вынуждающего излучения не зависит и приближенно равно

    (11.3)

    где -А21 — вероятность спонтанного перехода.

    Квантовые переходы с уровня Е1на уровень Е2 сопровождаются поглощением энергии вынуждающего излучения. Их количество равно

    (11.4)

    где В12 — вероятность квантового перехода с поглощением энергии;

    N1 — концентрация атомов в энергетическом состоянии Е1.

    Полагая в первом приближении равенство вероятностей В12 = В21 = В, получим условие лазерного усиления в виде

    (11.5)

    При малом уровне спонтанного излучения условие лазерного усиления прини­мает вид

    (11.6)

    В равновесном состоянии распределение атомов по различным энергетическим состояниям подчиняется статистике Максвелла—Больцмана

    (11.7)

    При этом N2 – N1 < 0, и лазерное усиление невозможно. Для того чтобы выполня­лось условие (11.6), необходимо осуществить предварительное внешнее воздей­ствие (накачку), приводящее к увеличению N2.

    Для количественной оценки лазерного усиления вводят понятие населенности уровня энергии, под которым понимают число атомов в единице объема, имеющих одинаковое энергетическое состояние. В состоянии термодинамического равновесия населенность верхнего уровня меньше, чем нижнего (N2 < N1). Для того что­бы получить усиление, необходимо выполнить условие N2>N1 .

    Газоразрядные лампы высокого давления

    Такое состояние называют состоянием с инверсией населенностей уровней. Формально это состоя­ние возможно при отрицательной температуре (T < 0). Среда, в которой осуще­ствлена инверсия населенностей, называется активной средой.

    Таким образом, для усиления вынужденного излучения необходимо, во-первых, осуществить инверсию населенностей и, во-вторых, подавить спонтанное излу­чение. Наименьший уровень энергии накачки, при котором выполняется условие инверсии, называется порогом инверсии.

    Принцип лазерного усиления в рубиновом стержне схематически показан на рис. 11.2. Возбужденный внешним воздействием атом излучает фотон, который, достигнув другого возбужденного атома, вызывает появление нового фотона. За­тем два фотона превращаются в четыре и т. д. В результате вдоль оси стержня возникает лавина фотонов, в которой все фотоны «шагают в ногу» с одинаковой частотой и фазой. Лавина катится вдоль стержня, становясь все мощнее за счет новых фотонов, захваченных но пути, и, достигнув торца стержня, излучается в виде очень тонкого светового луча с расходимостью около 0,003°.

    Генерация излучения

    Чтобы рассмотренный лазерный усилитель превратить в лазер — генератор излу­чения, необходимо ввести положительную обратную связь (ПОС). Параметры звена обратной связи выбираются так, чтобы энергия излучения, которая переда­ется с выхода лазерного усилителя на его вход, была достаточной для компенса­ции потерь в замкнутой цепи обратной связи. В лазере в качестве звена ПОС ис­пользуют оптические резонаторы, которые в простейшем случае состоят из двух зеркал, расположенных на торцах стержня (рис. 11.3). Для вывода излучения одно из зеркал делают полупрозрачным. Фотоны, направление движения которых об­разует малые углы с осью стержня, после многократных отражений от зеркал при­обретают энергию достаточную для того, чтобы через полупрозрачное зеркало покинуть стержень в виде узкого луча. Фотоны, направление движения которых не совпадает с осью стержня, выходят из него через боковые поверхности.

    Излучение лазеров имеет ряд замечательных особенностей. Во-первых, энергия излучается в виде узкого пучка, который легко фокусируется на площадку разме­ром ( — длина волны лазерного излучения). Например, если лазер излуча­ет импульс энергии 1 Дж в течение 1 мс с длиной волны порядка 0,7 мкм, то есть имеет мощность около 1 кВт, то интенсивность сфокусированного лазерного пучка достигает значения порядка 1011 Вт/см2. Практически достижимая интенсив­ность сфокусированного лазерного пучка может достигать 1020 Вт/см2. Огромная мощность лазерного излучения приводит к тому, что материалы, освещенные ла­зером, могут нагреваться. Благодаря этому лазеры нашли применение в промыш­ленности, науке и технике. Лучом лазера можно выполнять точную обработку деталей, прожигать в материале отверстия с точностью до долей микрометра, осу­ществлять точечную сварку, испарять часть поверхностного слоя или часть плен­ки, что широко используется в микроэлектронике. Те же свойства лазерного луча нашли применение в хирургии. Мощные лазеры используются для бурения неф­тяных скважин и в военной технике. Концентрация энергии современных лазе­ров достаточна для того, чтобы на расстоянии сотен километров прожигать бро­ню танков, корпуса ракет, фюзеляжи самолетов.

    Второй особенностью лазерного излучения является высокая монохроматич­ность, то есть практически лазер излучает одну-единственную частоту и соответ­ствующую ей одну-единственную длину волны. Это объясняется тем, что у всех фотонов в лазерном пучке одинаковая энергия. Поэтому лазер можно использо­вать в качестве стандарта частоты, отклонение которой от номинала не превыша­ет ±10-3 Гц. Монохроматичность и когерентность лазерных излучений сделали их незаменимым средством для точного измерения времени и частот, а высокая концентрированность и направленность лазерного луча обеспечивают возможность измерения расстояний, перемещений и размеров.

    Исключительно важной областью применения лазерного излучения является связь. На земле связь осуществляется по световодам, которые представляют со­бой кабели из специального стекла или прозрачной пластмассы. Эти вещества обладают высокой прозрачностью и вызывают очень малое затухание лазерного луча. Кроме устройств связи лазерное излучение используют в локаторах, имею­щих более высокую точность, нежели радиолокаторы, и для осуществления связи с космическими объектами.

    На применении лазерного излучения основана голография — область науки и тех­ники, занимающаяся получением объемных изображений, а также оптической обработкой и хранением информации. Лазерные методы используются также для высококачественной звукозаписи и видеозаписи. Ведется разработка систем голографического телевидения.

    Дата добавления: 2016-10-30; просмотров: 898 | Нарушение авторских прав

    Рекомендуемый контект:


    Похожая информация:


    Поиск на сайте:


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *