Тверской Городской Форум

Статьи, обзоры и общение

Расчет однотрубной системы отопления

Содержание

Коэффициент — затекание

Cтраница 1

Коэффициент затекания, как и следовало ожидать, получился меньше, чем в примере 8.3 (0.33), так как найден без учета естественного циркуляционного давления в малом кольце, способствующего затеканию воды в прибор.  

Коэффициент затекания будет для этого случая гораздо меньший, чем для однотрубной системы с нормальной циркуляцией.  

Коэффициенты затекания, характеризующие количество затекающей воды в приборы, подсчитаны и скорректированы на основании последних опытных данных Ловодгео и НИИ санитарной техники АСиА СССР. При расчете коэффициентов затекания учтены различные схемы присоединения приборов, строительная высота их и тепловые нагрузки.  

Коэффициенты затекания определялись для стояков, имеющих сжимы на прямых замыкающих участках. Диаметры сжимов были приняты на один размер меньше диаметров стояков.  

Коэффициенты затекания а для узлов, имеющих с одной стороны высоту приборов — с ЯСТр 1 000 мм, а с другой — 500 мм, приняты на 25 % больше для приборов с Ястр 1 000 мм. Ястр 500 мм, чем для соответствующих узлов с двухсторонним присоединением приборов и Ястр 500 мм.

Однотрубная система отопления с нижней разводкой

Коэффициент затекания, найденный по формуле ( VI.  

Коэффициент затекания, как и следовало ожидать, получился меньше, чем в примере VII.3 ( 0 33), так как найден без учета естественного циркуляционного давления в малом кольце, способствующего затеканию воды в прибор.  

Чем больше коэффициент затекания, тем большее количество воды проходит через нагревательный прибор.  

В итоге коэффициент затекания остается сравнительно небольшим. В этом случае даже значительное изменение количества воды, проходящей через нагревательный прибор, сравнительно мало отражается на величине упомянутого коэффициента.  

Чем выше коэффициент затекания, тем большее количество воды поступает в прибор. Количество воды, проходящей через прибор, а следовательно, и коэффициент затекания а зависят от способа присоединения приборов ( одностороннее и двухстороннее), соотношения диаметров стояка, замыкающего участка и трубных подводок к Прибору, а также от тепловой нагрузки приборов и скорости движения воды в стояке.  

Чем больше коэффициент затекания, тем больше воды поступает в прибор.

Наиболее простая и довольно эффективная система отопления, применяется для небольших помещений. Для того чтобы легче понять технологию монтажа, нужно понимать, что это такое, и как рассчитывать количество батарей. После краткого вводного ознакомления с этими вопросами перейдем к конкретному пошаговому монтажу.

Однотрубная система отопления с нижней разводкой

Что такое однотрубная система с нижней разводкой

Из названия понятно, что все батареи подключены к одной трубе, уложенной снизу по периметру отапливаемых помещений. Батареи к трубе присоединяются последовательно, вход/выход в батареях может быть нижним или диагональным (второй вариант имеет лучшие показатели по эффективности обогрева). Все батареи могут работать только одновременно.

Пример подключения радиаторов

Для расширения возможностей регулировки температуры в каждом помещении используется байпасная система – батареи подключаются параллельно к одной трубе, могут работать по отдельности и одновременно, дополнительно регулируется температура нагрева каждой батареи.

Подключение радиатора отопления

По виду контура однотрубная система бывает открытой и закрытой.

  1. В открытой есть расширительный бачок для приема увеличенного объема воды и слива излишков. Бачок связан с атмосферой, что и дало системе название открытой. Расширительный бак открытого типа Открытый расширительный бак Открытый расширительный бак способствует повышенной испаряемости жидкости, и, как следствие, необходимо постоянно следить за восполняемостью этой жидкости
  2. В закрытой системе расширительный бачок закрытого типа, вся система под давлением. Для предотвращения возникновения аварийных ситуаций в закрытом варианте на системе монтируется группа безопасности: манометр, воздухоотводчик и предохранительный клапан. Устройство закрытых расширительных баков Расширительный бачок мембранного типа Расширительный бак для отопления

Однотрубная система с нижней разводкой может работать только с принудительным движением теплоносителя (с насосом), да и то длина контура ограничивается. Вернее не столько длина контура, сколько количество подключенных батарей и их фактическая теплоотдача.

Однотрубная система отопления частного дома

Эти знания нужны для того, чтобы понимать принцип действия системы и знать, чего с ее помощью можно достичь. Такие знания дают возможность более осознанно делать монтаж, будет ясно, зачем нужна каждая труба и каждый кран. Байпасная система значительно улучшает характеристики однотрубного отопления, но по монтажу сложнее, по количеству составных элементов и стоимости дороже. Кроме того, ее можно монтировать только над напольными покрытиями, в противном случае регулировочные игольчатые краны будут недоступными.

Цены на байпас

Видео – «Ленинградка» – система отопления

Как рассчитать оптимальное количество секций радиатора

Климатические показатели в помещениях должны отвечать требованиям СНиПа 41-01-2003, там же дается и методика расчета. Это довольно сложные вычисления, сделать их без серьезных знаний теплотехники невозможно. Перечислим только несколько исходных данных, которые принимаются во внимание во время проведения расчетов.

Файл для скачивания – СНиП 41-01-2003

СНиП 41-01-2003 (Отопление, вентиляция и кондиционирование)

  1. По помещению. Объем, теплопроводность стен, потолка и пола, климатическая зона расположения, максимальные значения температур, количество и характеристики оконных и дверных проемов, кратность воздухообмена системами вентиляции, пространственное расположение помещения и т. д.
  2. По отопительным системам. Температура теплоносителя на входе и выходе, скорость и тип теплоносителя, физические характеристики теплообменников, общая мощность теплового котла и т. д.

Приблизительный расчет количества секций алюминиевых радиаторов на комнату

Таблица примерных расчетов

Это значит, что точные расчеты самостоятельно вам не сделать. Для таких случаев существуют общие рекомендации практиков, которых вполне достаточно для монтажа отопления. Тем более, что сегодня на каждой батарее можно регулировать мощность теплоотдачи с учетом фактических условий.

Хотя батарее греют объем воздуха, для простоты расчетов употребляются квадратные метры помещения, при этом берется стандартная высота комнат. Для зданий, коэффициент теплопотерь которых не выходит за требования существующих нормативных актов, можно считать, что на обогрев 1 м2 достаточно 100 Ватт.

С учетом конкретных архитектурных характеристик помещений можно более точно узнать затраты тепловой энергии по формуле

КТ (количество тепла) = 100 Вт/м2 × П × К1 × К2 × К3 × К4 × К5 × К6 × К7, где

  • П – площадь помещения в квадратных метрах;
  • К1 – коэффициент остекления оконных проемов, может быть в пределах 1,27÷0,85 в зависимости от характеристик стеклопакетов. Для одинарных – 1,27, для двойных – 1,0, для тройных – 0,85;
  • К2 – коэффициент теплоизоляции внешних стен. От 1,27 для стен толщиной в полтора кирпича до 0,85 с высокой теплоизоляцией. Определяется «на глаз»;
  • К3 – отношение площади окон к площади пола.

Далее учитывается минимальная температура (К4), качество наружных стен (К5), тип чердака (К6) и коэффициент высоты потолков (К7). Общая потребность тепла должна отвечать мощности котла, чтобы котел не работал постоянно на критических режимах – лучше сделать запас по мощности приблизительно 20%.

Расчет количества секций радиаторов отопления

Конечно, никто из «любителей» и таких упрощенных расчетов не делает, да это и не нужно. Наш совет – берите примерно 120 Вт/м2, учитывайте теплоотдачу одной секции батареи (дается производителем), подсчитывайте общее количество секций для каждого помещения и соотносите ее с мощностью котла. Не пугайтесь, что будет слишком высокая температура и большие платежи за теплоносители – каждая батарея может отдельно регулироваться.

Правильно подобранное число секций обеспечит оптимальную теплоотдачу и создаст наиболее комфортные условия

Монтаж однотрубной системы отопления

Для выполнения монтажных работ, кроме обыкновенных инструментов, нужно иметь и специальный аппарат для сварки пропиленовых труб, стоит он не очень дорого, научиться работать с ним не составит большого труда. В стандартный набор входят ножницы для обрезания труб – пользоваться ими очень удобно, срез получается ровным.

Полная комплектация для сварки Ножницы для труб

Как выполнять монтаж отопительной системы? Работы следует разбивать на несколько этапов.

Этап 1

Нужно сделать эскиз системы отопления, на нем продумать расположение котла, где и как будут лежать трубы, сколько, где и каких радиаторов нужно установить.

Чертеж однотрубной системы отопления

Не надейтесь, что эскиз получится с первого раза, после первых попыток разметки есть большая вероятность, что придется вносить изменения. Возможно, будет необходимо создать несколько контуров для отвода холодной воды, а это потребует приобретения дополнительной водопроводной арматуры и фитингов. Во время составления эскиза принимайте во внимание требования по мощности котла и оптимальные физические характеристики теплообменников.

Однотрубная разводка

Этап 2

Покупка материалов. Подсчитайте количество всех поворотов, тройников и переходов, соединительных муфт, обыкновенных шаровых и игольчатых кранов, систем контроля и управления, длину полипропиленовых труб.

Полимерные трубы и фитинги

Структура разъемного фитинга

Важное замечание – если у вас будет отопительная система открытого типа, то можно покупать обыкновенные трубы, если система отопления закрытая (работает под давлением 1,5 атм.), то трубы должны иметь армирование фольгой. Если контур располагается под полом – нужно приобретать утеплители.

Современная теплоизоляция труб Утеплитель для труб отопления

Когда все подсчеты сделаны, увеличьте общее количество труб и фитингов на 10%, это покроет непродуктивные отходы и возможные ошибки. Намного дешевле в конечном итоге обойдется увеличение количества материалов, чем необходимость уже во время работ «замораживать» их и еще раз ехать в магазин за покупкой недостающего.

Рекомендуемые диаметры труб в зависимости от предполагаемой мощности отопительной системы.

Условный диаметр в дюймах Максимальная пропускная способность теплоносителя Максимальная тепловая нагрузка
½ 5,7 л/мин 5,5 кВт
¾ 15 л/мин 14,6 кВт
1 30 л/мин 29,3 кВт

Если расчетный диаметр трубы больше стандартного диаметра на радиаторе – приобретите соответствующие переходники.

Цены на полипропиленовые трубы

Этап 3

Сделайте разметку на месте, растяните трубы, расставьте батареи, фитинги и краны, еще раз проверьте все составные элементы. Разметку делайте внимательно, используйте уровень.

Все подготовлено, проверено и пересчитано, план устройства системы отопления составлен, конечные цели понятны, можно приступать к монтажу. Если вы монтируете систему отопления во время строительства здания – лучше прокладывать трубы под полом, если здание уже стоит – придется их крепить внизу стены. Трубы под полом следует утеплять, для этого есть специальные утеплители, они очень эффективны и легко устанавливаются.

Скрытый монтаж в стене или полу

Еще один момент – вы собираетесь делать обыкновенную однотрубную систему утепления или байпасную? Вторая несколько сложнее и требует большего количества арматуры. Зато она позволяет регулировать температуру каждой батареи и, в случае необходимости, ремонтировать или заменять их без полного отключения системы.

Байпас в системе отопления

Байпас при однотрубной системе Байпас для отопления – имеет простое устройство Схема системы отопления с байпасом

Наш совет – для небольшой дачной бани с одной–двумя комнатами можно пользоваться обыкновенной системой, для зданий с тремя–четырьмя комнатами лучше монтировать байпасную.

Монтаж отопительного котла

Обвязка котла отопления

Шаг 1. Выберите место. Котел должен находиться в максимальной близости к существующей системе подвода воды, должны решаться проблемы с дымоходом. Закрепите котел на стене или установите на полу, соблюдайте горизонтальность. Во время установки дымохода соблюдайте элементарные правила пожарной безопасности.

КОТЛЫ ОТОПИТЕЛЬНЫЕ ГАЗОВЫЕ СТАЛЬНЫЕ ТИПА “ДАНКО”. РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

Инструкция к котлу

Инструкция по монтажу и сервисному обслуживанию для специалистов VIESMANN

VIESMANN – инструкция по монтажу газового котла

Шаг 2. Если отопительная система открытого типа – нужно делать расширительный бачок со сливом. Это может быть обыкновенная металлическая квадратная емкость примерно на десть литров. Подключается к котлу на выходе горячей воды, причем бачок должен быть расположен выше котла и батарей.

Открытый расширительный бак для отопления

Система имеет принудительную циркуляцию воды, поэтому ставить бачок очень высоко нет смысла. На бачке должна быть постоянно открытая сливная трубка для отвода лишней воды по время нагрева и предупреждение образования вакуума во время остывания теплоносителя. Таким же образом монтируется и расширитель закрытого типа.

Цены на расширительные бачки

Видео – Расширительный бак мембранного типа

Видео – Подключение мембранного расширительного бака к полипропилену

Шаг 3. Установка блока безопасности. Монтируется только для отопительных систем закрытого типа в доступном месте, в большинстве случаев рядом с котлом. Блок контроля и безопасности состоит из манометра (показывает фактическое давление в системе), клапана для спуска воздуха и предохранительного клапана. Предохранительный клапан автоматически срабатывает при превышении максимально допустимых значений давления.

Видео – Группа безопасности

Шаг 4. Установка насоса.

Сборка насоса Монтаж узла отопления

Насосы продаются вместе с котлами, во всех современных газовых и электрических котлах монтируются в корпусе, никаких дополнительных действий не нужно. Если устанавливаемая модель не имеет вмонтированного насоса или у вас твердотопливный котел, то придется приобрести его отдельно. Устанавливается в любом удобном месте на входе холодной воды из системы отопления в котел.

Установка насоса с применением обратного шарикового клапана Вариант установки насоса Пример установки насоса
Монтаж насоса в систему отопления Как удалить воздух из циркуляционного насоса перед пуском Схема установки

Видео – Установка циркуляционного насоса GRUNDFOS в систему отопления

Шаг 5. Установка фильтра. Здесь есть нюансы. Дело в том, что многие отопительные котлы имеют два контура горячей воды, один используется для отопления, а второй используется для бытовых потребностей: душ, мытье посуды. Если воду из котла забирают часто, то возрастает вероятность попадания в котел различных механических примесей, фильтр ставить рекомендуется. Если котел работает только для отопления, то фильтр ставить необязательно, вода из системы никуда не отбирается, никакие примеси в нее не попадут. Есть вариант – вода на даче подается плавающими насосами из колодцев. В этом случае во время установки насосов должен быть смонтирован фильтр. Если этого не сделано – поставьте фильтр на входе воды в котел.

В механике есть аксиома – чем больше установлено различного оборудования, тем уязвимее система, возрастает вероятность, что какое-нибудь устройство выйдет из строя. Опытные инженеры стараются монтировать только критически важные механизмы и оборудование, все остальные не используются. Это касается и фильтра – нет таких в другом месте или вероятность попадания примесей стремится к нулю – фильтры ставить не нужно. Это лишние соединения, лишние корпуса и начинка, а каждое соединение может дать течь. Имейте в виду это правило при монтаже любых систем.

Фильтр для системы отопления

Практический совет. Все существующие фильтры (кроме очень дорогих с молекулярными фильтрами, так называемые фильтры осмосного типа) очищают воду только от механических примесей. Это хорошо, но их в воде из трубопровода и так не бывает. Котел боится отложений на стенках солей кальция – значительно снижается теплоотдача, понижается эффективность. Для предупреждения таких явлений мы рекомендуем использовать обыкновенный жидкий Калгон (используется во время стирки). Залейте его в замкнутую систему отопления во время наполнения из расчета примерно 1 л на 100 л воды – проблемы с кальцием будут решены.

Цены на циркуляционные насосы

Монтаж труб отопления и разметка для установки радиаторов

Шаг, №№ Иллюстрация Описание или пояснение
Шаг 1. Высверлите отверстия под клипсы (крепежи для труб) и отверстия для прохождения труб через перекрытия или стены.

Бетонные стены лучше сверлить специальным буром или алмазным инструментом

В зависимости от материала изготовления стен и перекрытий нужно пользоваться обыкновенной дрелью или перфоратором.
Шаг 2. Протяните трубы через отверстия.

Прокладка труб

Очень важно – во время протягивания труб, нужно закрыть их отверстия, в противном случае есть вероятность попадания внутрь посторонних предметов. Удалить потом попавшие предметы из трубы невозможно, а проблем они могут создать множество.
Труба очень длинная и трудно протягивается? Прикиньте, в каких местах можно установить соединительные муфты, замерьте расстояние и разрежьте трубу на несколько кусков. Трубу отрезайте с запасом, вам никогда сразу точно не удастся замерить оптимальную длину труб, потом на месте сделаете подгонку.
Шаг. 3. Разметка места установки радиаторов.

Первоначальная разметка для определения места крепления радиатора

Необходимые отступы при монтаже радиатора в нише

Все радиаторы должны размещаться на одной высоте, работы выполняйте по уровню. Каждый тип радиаторов имеет свои отличия, чтобы облегчить и ускорить разметку сделайте простой шаблон из отрезка доски или фанеры. Отметьте на ней положение верхних и нижних кронштейнов крепления, просверлите в этих местах отверстия. Далее только ставьте шаблон на пол, прислоняйте к стене и отмечайте места крепления кронштейнов.
Все работы по разметке делайте очень внимательно, от этого во многом зависит качество и скорость дальнейших работ по монтажу отопительной системы.
Шаг 4. Подготовка радиаторов.

Подготовка радиатора к монтажу

Сборка алюминиевых радиаторов отопления

Сейчас чугунными радиаторами не пользуются, в «почете» алюминиевые или биметаллические. Их достоинство – при меньших габаритах значительно большая площадь теплообмена. Это же достоинство является и недостатком, о котором не указывают производители. Алюминиевые радиаторы имеют очень много различных перемычек (для увеличения площади), которые расположены в труднодоступных местах. Удалить пыль оттуда невозможно. Если толщина пыли достигает одного миллиметра, то эффективность теплоотдачи снижается вдвое. Куда делось достоинство? Риторический вопрос, а высокая цена осталась. Реклама часто используется производителями для того, чтобы дороже и быстрее реализовать продукцию, а не сделать что-то полезное для потребителя. Это касается не только радиаторов, помните об этом.
Выкрутите заводские футорки (в некоторых типах радиаторов могут быть заглушки), резьбу уплотните герметиком, паклей или современным ленточным уплотнителем. Прикрепите таким же образом вентили и тройники, если они нужны по технологической схеме.

Как работать с полипропиленовыми трубами

Мы уже упоминали, что эти трубы имеют отличные характеристики и вполне подходящую цену, именно эти качества стали причиной высокой популярности. Пайка труб выполняется специальным паяльником, температура плавления полипропилена +270°С, такую температуру следует выставить на терморегуляторе устройства. Время нагрева труб зависит от их диаметра. В таблице указаны примерные значения параметров.

Время нагрева труб

Диаметр словного прохода трубы, мм Примерное время нагрева, сек.
20 5
25 7
32 8
40 12
50 18
63 24
75 30

Паяльник имеет две насадки, с помощью одной нагревается внутренняя поверхность трубы, с помощью другой нагревается внешняя поверхность трубы. Греть нужно обе поверхности одновременно, как только пройдет указанное время отрезки труб вынимаются и с небольшим усилием вставляются друг в друга. Очень важно – во время стыковки трубы запрещается вращать, усилия должны быть только осевыми. После соединения нужно некоторое время выдержать соединения (секунд десять) для остывания.

С приобретением опыта будет получаться аккуратная окантовка. Соединения по прочности почти не отличаются от прочности цельных труб, протечка и разгерметизация во время эксплуатации исключается. Не забудьте во время отрезания труб прибавлять по сантиметру с каждой стороны, эта длина уйдет на соединение. Не устаем повторять – любая работа требует ума и внимательности.

Не спешите склеивать все подряд, думайте, предусматривайте свои действия на несколько шагов вперед. Бывают моменты, когда нужно пропустить обрабатываемый участок и склеить трубы впереди, а потом вернуться на изначальное место. Это обусловлено тем, что потом не будет возможности добраться к рабочему месту паяльником. Одним словом, продумывайте технологию пайки на несколько шагов вперед – как какой отрезок нужно повернуть для спайки, будет ли потом такая возможность и т. д.

Чем более грамотно проработана схема монтажа полипропиленовых труб, тем меньше придется производить спаек «на весу»

Монтаж радиаторов

Один из наиболее сложных видов работ при монтаже системы отопления. Мы уже сделали на стене разметку, теперь нужно навесить батареи.

Шаг 1. Высверлите по разметке отверстия под дюбели. Для сверления нужно использовать сверло с победитовой наплавкой (для кирпича и бетона) Дрель следует установить в режим перфорации. Диаметр и длину дюбелей выбирайте с учетом габаритов и веса батарей.

На фото ассортимент крепёжных приспособлений для радиаторов Кронштейн для радиатора установлен

Шаг 2. Прикрутите к батарее кран Маевского, отвод и заглушки.

Кран Маевского в системе отопления Кран Маевского

Обратите внимание, что заглушки могут устанавливаться в различных местах, в зависимости от того, где вы их установили, поток теплоносителя может быть диагональным или горизонтальным. Если у вас система отопления байпасная, то нужно припаять в нужном месте тройники, сделать ответвление для крепления перемычки, позволяющей полностью отключать батарею во время ремонта или замены.

Нарезаем на трубе резьбу Наматываем лен на резьбу Можно накручивать кран

Еще одно – для возможности регулировки температуры каждой батареи в байпасной системе отопления надо около каждого радиатора устанавливать игольчатый кран, с помощью которого будет регулироваться сила потока теплоносителя (таким способам изменяется температура батареи). Почему именно игольчатый кран? Потому что он обеспечивает плавную и точную регулировку скорости потока теплоносителя.

Во время пайки соблюдайте направление тройника с направлением кранов радиатора. Чтобы не ошибиться, перед началом работ сделайте карандашом для себя специальные метки, проверьте их правильность и только после этого начинайте пайку. Если все-таки ошиблись – это неприятно, но не смертельно. Отрежьте неправильный участок и повторите операции в правильном порядке, именно для таких ситуаций вы покупали все элементы с запасом.

Шаг 3. Сделайте обвязку батарей для обводных участков. Мы уже упоминали, что с помощью них повышается универсальность системы. Эта операция касается только байпасной системы.

Проверка правильности установки радиатора

Запуск системы

Запуск системы

К вашему сведению, проекты промышленного отопления на пусконаладочные работы предусматривают до 10% общей сметы. Это значит, что пусконаладочные работы очень важные и сложные. Чтобы застраховать вас от совершения ошибок, дадим несколько практических советов.

  1. Перед заполнением системы водой откройте все клапаны и устройства для выпуска воздуха. Обращаем внимание – не после наполнения, а до. Пусть воды немного прольется на пол, это не страшно. Закрывайте их только после появления воды.
  2. Наполняйте систему медленно, не открывайте водяной кран полностью. Дело в том, что быстрое наполнение может стать причиной образования воздушных пробок в таких местах, из которых их удалить невозможно – приходится спускать воду и все начинать сначала. Это бывает не всегда, все зависит от правильности монтажа системы, но у новичков такой конфуз случается.

Видео – Запуск и заполнение системы отопления теплоносителем

Однотрубную систему отопления с нижней разводкой целесообразно устанавливать в небольших зданиях, чем дальше батарея от котла – тем ниже температура ее нагрева. Если в дачном домике не планируется постоянное проживание – то зимой во время отсутствия воду нужно сливать, а по приезде опять наполнять. Не каждому охота заниматься такими делами. Выход – в качестве теплоносителя использовать антифриз, но это дорого.

Теплоноситель (антифриз) для системы отопления Антифриз

При желании можно смонтировать однотрубную систему отопления в бане. Только зачем? Парную обогревать не нужно, батареи устанавливаются только в предбаннике. Для этого помещения достаточно одного–двух радиаторов.

Что такое гидравлический расчёт

Это третий этап в процессе создания тепловой сети. Он представляет собой систему вычислений, позволяющих определить:

  • диаметр и пропускную способность труб;
  • местные потери давления на участках;
  • требования гидравлической увязки;
  • общесистемные потери давления;
  • оптимальный расход воды.

Согласно полученным данным осуществляют подбор насосов .

Для сезонного жилья, при отсутствии в нём электричества, подойдёт система отопления с естественной циркуляцией теплоносителя (ссылка на обзор ).

Основная цель гидравлического расчёта — обеспечить совпадение расчётных расходов по элементам цепи с фактическими (эксплуатационными) расходами. Количество теплоносителя, поступающего в радиаторы, должно создать тепловой баланс внутри дома с учётом наружных температур и тех, что заданы пользователем для каждого помещения согласно его функциональному назначению (подвал +5, спальня +18 и т.д.).

Комплексные задачи — минимизация расходов :

  1. капитальных – монтаж труб оптимального диаметра и качества;
  2. эксплуатационных:
    • зависимость энергозатрат от гидравлического сопротивления системы;
    • стабильность и надёжность;
    • бесшумность.

Замена централизованного режима теплоснабжения индивидуальным упрощает методику вычислений

Для автономного режима применимы 4 метода гидравлического расчёта системы отопления:

  1. по удельным потерям (стандартный расчёт диаметра труб);
  2. по длинам, приведённым к одному эквиваленту;
  3. по характеристикам проводимости и сопротивления;
  4. сопоставление динамических давлений.

Два первых метода используются при неизменном перепаде температуры в сети.

Два последних помогут распределить горячую воду по кольцам системы, если перепад температуры в сети перестанет соответствовать перепаду в стояках/ответвлениях.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже.

Гидравлический расчет отопительной системы здания. Устройство двухтрубной гравитационной системы водяного отопления с верхней разводкой, ее схема с указанием длин участков трубопроводов и размещения отопительных приборов. Расчет основных параметров.

контрольная работа , добавлен 20.06.2012

Монтаж стационарной отопительной установки. Гидравлический расчет системыводяного отопления. Тепловой расчет отопительных приборов системы водяного отопления. Подбор нерегулируемого водоструйного элеватора типа ВТИ. Расчет естественной вентиляции.

курсовая работа , добавлен 19.12.2010

Гидравлический расчет и конструирование системы отопления жилого здания. Характеристика отопительных приборов. Определение количества типоразмеров конвекторов. Прокладка магистральных труб. Установка отопительных стояков. Расчет отопительных приборов.

курсовая работа , добавлен 11.06.2013

Определение тепловых нагрузок помещений на систему отопления. Подбор приборов к системе отопления основной части здания и для четвертой секции, балансировка системы отопления. Гидравлический расчет системыотопления двухтрубной поквартирной системы.

курсовая работа , добавлен 23.07.2011

Проектирование насосной системы водяного отопления индивидуального жилого дома. Характеристика наружных ограждений. Составление тепловых балансов помещений. Гидравлический расчет главного циркуляционного кольца. Тепловой расчет отопительных приборов.

курсовая работа , добавлен 22.03.2015

Теплотехнический расчет системы. Определение теплопотерь через ограждающие конструкции, на инфильтрацию наружного воздуха. Расчет параметров системы отопления здания, основного циркуляционного кольца системы водяного отопления и системы вентиляции.

курсовая работа , добавлен 11.03.2013

Обоснование схем и компоновка систем отопления, гидравлический расчет. Определение основных параметров основного циркуляционного кольца. Тепловой расчет поверхности отопительных приборов. Число элементов в секционном приборе, поправочные коэффициенты.

контрольная работа , добавлен 01.07.2014

Теплотехнический расчет ограждающих конструкций здания. Учет влажности материалов при расчете теплопередачи. Определение площади поверхности и числа элементов отопительных приборов. Гидравлический расчет теплопроводов. Методика расчета вентиляции.

курсовая работа , добавлен 22.11.2014

Классификация видов отопления помещений в зависимости от преобладающего способа теплопередачи. Особенности конвективной и лучистой систем отопления. Характеристика огневоздушного, водяного, парового, инфракрасного и динамического вида отопления.

курсовая работа , добавлен 02.04.2015

Определение толщины и состава слоев стен. Определение массивности здания и расчетной температуры. Проверка на отсутствие конденсации. Выбор конструкции заполнения световых проемов. Гидравлический расчет системы отопления. Расчет системы вентиляции.

курсовая работа , добавлен 08.03.2015

На тему: «Гидравлический расчет однотрубной системы отопления»

Ханин М.А.

Проверила: Попова М.В.

г. Якутск, 2011

Задачей гидравлического расчета является определение диаметров подающих трубопроводов и потерь напора.Инерционность систем отопления Инерционность системы отопления — это характеристика, определяющая насколько быстро система может нагреваться и охлаждаться. Инерционность системы зависит от количества теплоносителя, его качественных характеристик (вода или спец теплоноситель), входящего в систему, от типа и количества труб и от размеров отопительных приборов, а так же от количества углов поворота в системе, правильно выбранный котловой коллектор или распределительная гребенка Например инерционной системой является гравитационная система основанная на чугунном котле, имеющая большой диаметр стальных труб, чугунные батареи, вмещающие большое количество воды, и дополнительно аккумулирующий бак, содержащий свыше 1 м3 воды.Обычно люди, занимающиеся установкой систем отопления считают, что система должна быть максимально динамична. Конечно, динамичная система обладает многими достоинствами. Динамичная система позволяет с большой точностью регулировать температуру в помещениях; правильно и быстро реагировать на резкие изменения температуры (например, открыли форточку, солнце светит в окно). Однако, за эти достоинства приходится платить.В каменных домах инерционная система работает на равне с динамичной, однако существуют ситуации в которых требуется высокая инерционность системы. Эта ситуация возникает при наличии твердотопливного котла.

При гидравлическом расчете однотрубных систем отопления необходимо учитывать следующие рекомендации:

— потери давления в стояках должны составлять не менее 70% общих потерь давления в циркуляционном кольце за вычетом потерь давления оборудования теплового узла;

— рекомендуется применять верхнюю разводку магистральных теплопроводов, при которой обеспечивается движение воды к отопительному прибору «сверху-вниз»;

— для устойчивой работы П-образных стояков в опускной его части (при движении воды «снизу-вверх») расход воды в нем должен быть более минимально допустимого значения, определяемого по ;

— для многоэтажных зданий при нижней разводке магистральных теплопроводов рекомендуется применять П-образные стояки с транзитным подъемным участком и отопительным опускным, а также Т-образные стояки с транзитным подъемным участком и двумя отопительными опускными;

— стояк проектируется неизменного диаметра с использованием последовательно соединенных унифицированных узлов, при расчете стояк рассматривают как один участок;

— расчет рекомендуется проводить при одинаковых (постоянных) или различных (переменных) перепадах температуры воды в стояках методом характеристик сопротивления.

Рассмотрим на примере порядок и последовательность расчета. Для расчета приняты исходные данные предыдущих примеров 1.1. 1.3.

ПРИМЕР 1.4. В качестве примера выполним гидравлический расчет однотрубной вертикальной тупиковой системы водяного отопления с централизованным теплоснабжением от тепловых сетей при независимой схеме присоединения системы отопления к ним. Заданы следующие расчетные параметры тепловых сетей и системы отопления; Тг = 120°С, Та = 70°С, k = 85°C, f0 = 65°C. Тепловые нагрузки помещений QA и здания Q3d = = 53540 Вт принимаем из табл. 1.3. Следует помнить исходное, заданное в примере 1.2 условие индивидуального регулирования в системе отопления (Hi =0,8), что соответствующим образом отразилось на величине расчетных тепловых нагрузок помещений и здания.

По выражению (1.18) определяем расчетную мощность системы отопления:

Затем на планах и разрезах этажей, подвала и чердака (рис. 1.11. 1.13) указываем в условных обозначениях отопительные приборы, стояки, магистральные теплопроводы, трубопроводы ввода тепловых сетей в тепловой пункт и трубопроводы ввода системы отопления в тепловой пункт. На планах и разрезах теплового пункта (в примере не показаны) указываем местоположение основного оборудования с привязкой его размерными линиями к осям или стенам теплового пункта.

На основании указанных выше чертежей выполняем аксонометрические (в данном случае в косоугольной диметрии) схемы системы отопления (рис. 1.14, 1.15). На схеме системы отопления распределяем тепловые нагрузки помещений Q4 по отопительным приборам в виде нагрузки отопительного прибора, суммируем по стоякам и указываем на схеме.

Определяем основное расчетное циркуляционное кольцо — через наиболее нагруженный из удаленных стояков наиболее нагруженной ветки системы, т.е. через стояк №24 ветки Б. Разбиваем основное циркуляционное кольцо на расчетные последовательные участки, нумеруем их и указываем на схеме. Определяем их длины ?уч и тепловые нагрузки Qt. Расчет тепловых нагрузок участков выполняем по выражению (1.17), начиная от Ст.24 и суммируя с нарастающим итогом в сторону теплового пункта. Например, для участков №13 и №13- Qt = 1,05 3030 = 3180 Вт.

Исходные данные и результаты гидравлического расчета рекомендуется вносить в ведомость гидравлического расчета, например в виде табл. 1.6. Расход воды определяем по выражению (1.19): G = 0,86Qf/(85 — 65) = 0,043 Q, и заносим в графу 3. Диаметры участков подбираем, задаваясь оптимальной скоростью движения теплоносителя не более 0,4. 0,5 м/с, с помощью таблиц гидравлического расчета . Учитывая вероятность образования отложений в магистралях, принимаем диаметры некоторых участков, например №11. 13, на типоразмер выше. На основании принятых диаметров заполняем графы 7 и 10 из табл. 10.7 .

Значения Syd (графа 5), необходимые при выполнении расчета по задаваемому циркуляционному давлению, в данном случае не вычисляется, т.к. расчет ведем по задаваемой скорости воды на участке. Расчет проводится по выражению (1.31), т.е. значение графы 8 получаем перемножением величин в графах 4 и 7, значение графы 10 — сложением величин в графах 8 и 9, значение графы 12 — перемножением величин в графах 10 и 11. И окончательно, потерю давления на участке — по выражению (1.30).

Характеристика сопротивления стояка определяется суммой характеристик сопротивления трубных узлов и других стояков диаметром dv = 15 мм

Требуемое значение пропускной способности kv балансового клапана определяем по формуле (1 28), а также с помощью номограммы, аналогичная схема которой показана на рис 1 106, для определения значения и гидравлической настройки клапана

В настоящем примере использованы номограммы фирмы Herz для балансовых клапанов Расчет гидравлических параметров и его результаты выполняем в ведомости в виде табл 1.7

Отношение воды к схемам подключения радиаторов отопления.

Вода – не дура, она, как и мы с вами, хорошо знает законы гидравлики и гидродинамики. Даже больше – в отличие от нас, людей, вода эти законы не только знает, но и выполняет! Ей больше некуда деваться, как только протекать (или – не протекать) по тем изгибам и сужениям труб, которые мы придумали и смонтировали.

В этой статье мы говорим только об однотрубной системе отопления. Двухтрубная система в подробных разъяснениях не нуждается, поэтому она и применяется, пожалуй, во всем мире, кроме России.

Если мы хотим, чтобы в наших квартирах было тепло, тем, кто забыл, придется вспомнить кратко то, чему нас пытались научить еще в школе (в техникуме, в институте) любимые учители физики (гидравлики)*.

Некоторые основные понятия в гидравлике:

  • гидравлические потери;
  • коэффициент затекания воды в отопительный прибор.

Гидравлические потери

Гидравлические потери — вид потерь энергии в трубопроводах и другом гидрооборудовании, обусловленный работой сил вязкого трения между слоями жидкости, а также силами взаимодействия между жидкостью и контактирующими с ней твёрдыми телами.

Гидравлические потери принято разделять на три вида:

  • потери на трение воды о внутреннюю поверхность трубы по ее длине, которые определяются по формуле Дарси-Вейсбаха (наименование формул я привожу только для того, чтобы Вы убедились, что вода – тоже умная и течет по нашим трубам и радиаторам только по этим формулам!);
  • потери в оборудовании (отопительном радиаторе). Эти потери называются «характеристика сопротивления радиатора», определяются как потеря давления в нем при расходе теплоносителя 360 кг/час, измеряются в Па/(кг/с)2и обозначаются Sн у.
    Характеристики сопротивления некоторых типов радиаторов см. в конце статьи в таблице 2.
  • местные гидравлические потери ζну, связанные с изменением сечения или конфигурации участка системы отопления.

Примеры местных потерь – входное и выходное отверстие радиатора, внезапное или постепенное расширение или сужение трубы, повороты трубы, запорный или регулировочный вентиль и др. Коэффициенты местных потерь (коэффициенты Дарси) вычисляются по эмпирическим формулам.

Коэффициенты местных потерь (местного сопротивления) радиаторов и ряда деталей трубопроводов отопления см. в конце статьи в таблицах 2 и 3.

Вы хотите, чтобы больше горячей воды затекало в ваши радиаторы, и меньше — протекало мимо, по стояку отопления? Тогда продолжайте внимательно читать дальше.

Коэффициент затекания воды в отопительный прибор

Коэффициент затекания воды в отопительный прибор – это доля воды, поступающей в отопительный прибор (далее наз.

Расчёт однотрубной системы отопления

– радиатор), от всей массы воды, протекающей по стояку до места ответвления к радиатору.

Чем меньше коэффициент затекания воды в отопительный прибор (далее наз. – коэффициент затекания), тем меньшая часть воды из стояка поступает в радиатор.

Значения коэффициентов затекания зависят:

  • от различных сочетаний диаметров труб стояков (dст), байпасов (смещённых замыкающих участков) (dзу), подводящих труб от стояков к радиаторам (dп).

    Наиболее распространенные сочетания диаметров dст х dзу х dп (мм):

    , и (см. таблицу 1);

  • от геометрической конфигурации узла подводки к радиатору (см. схемы 1 – 10). В зависимости от схемы подключения радиатора к стояку коэффициент затекания

    изменяется от 0,15 (схемы 3 и 6) до 1,0 (схемы 2 и 5);

  • от длины подводящих труб от стояков к радиаторам (dп);
  • от характеристики сопротивления радиатора Sн у;
  • от местных потерь во входном и выходном отверстии (патрубке) радиатора,

Усреднённые значения коэффициентов затекания αпр узлов однотрубных систем водяного отопления с чугунными радиаторами МС-110 при расходе теплоносителя по стояку более 100 кг/ч

Таблица 1

Значения αпр при сочетании диаметров труб

радиаторного узла

dст х dзу х dп (мм)

15х15х15

20х15х15

20х15х20

0,25 – 0,24

0,185 – 0,195

0,245 – 0,265

Характеристики сопротивления и коэффициенты местных потерь некоторых типов радиаторов отопления при расходе теплоносителя через прибор 360 кг/ч и условном диаметре подводящих труб 15 мм

Таблица 2

Марка радиатора

Материал, тип

характеристика сопротивления радиатора

Sн у

Па/(кг/с)2

Коэффициент местных потерь

(местного сопротивления)

ζну

«САНТЕХЛИТ» МС-110

чугунные секционные

2,74

1,5 – 1,8

«САНТЕХЛИТ» МС-85

чугунные секционные

2,74

2,0 — 2,1

«Сантехпром» БМ

биметаллические

секционные

2,19 – 2,47

1,6 – 1,8

РСПО

стальные

панельные

2,1 – 5,7

1,5 – 4,2

VONOVA Kompakt

стальные

панельные

1,0 – 6,4

0,75 – 4,7

PRADO Classic

стальные

панельные

1,3 – 3,1

1,1 – 2,2

Коэффициенты местных потерь (местного сопротивления) деталей трубопроводов отопления

Таблица 3

Наименование элемента

(детали)

Характеристика элемента

Коэффициент

местных потерь

Вход в трубу

с острыми краями

0,5

с закругленными краями

2 — 0,1

(в зависимости от радиуса закругления)

с выступающими острыми краями

1,0

Внезапное сужение

вход с острыми краями

0,62-0,63

вход с закругленными краями

0,7-0,99

Поворот струи на 90о

Закругление (гиб)

0,14-0,3

(в зависимости от радиуса закругления)

Прямое колено (уголок)

1-1,5

Вентили и задвижки (при полном открытии

Обыкновенный проходной вентиль

3-5,5

Задвижка

0,12

Терморегулирующий вентиль

0,8 – 8,0

Пора нам вернуться непосредственно к схемам подключения радиатора к системе отопления.

Просмотрели схемы и сравнили их со схемами в вашей квартире?

А теперь поставьте себя на место воды, которая притекает к вашему радиатору и видит: «…впереди несколько сужений, переходов, несколько поворотов труб на 90о, трубы длинные, запорные и регулировочные вентили и др…». И решит вода: «… и зачем мне по этим катакомбам пробираться, пролечу-ка я мимо по байпасу, как мне уравнение Бернулли, формула Дарси-Вейсбаха и числа Рейнольдса велят! А тепло отдам соседу этажом выше (ниже)».

Так что если Вы законы гидравлики все еще не зауважали, возвращайтесь к началу статьи и читайте еще раз, почему вода-не дура в вашу батарею затекать не пожелала.

Статью подготовил Специалист ЖКХ Юрий Калнин.

>Лабораторная работа 4 Определение коэффициента затекания воды

в отопительный прибор

Цель работы – освоение методики экспериментального определения коэффициента затекания.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *