Тверской Городской Форум

Статьи, обзоры и общение

Регулятор оборотов для вентилятора

Завалялась у меня платка DC/DC с ШИМ(ШиротноИмпульсныйМодулятор) на 555 таймере появилась идея использования этого же ШИМа для управления вентилятором системы охлаждения двигателя. Что это дает?
1.Плавное включение вентилятора без просадок бортового напряжения(достигается за счет плавного изменения напряжения на датчике) и как следствие продление жизни самого вентилятора.
2.Зависимость оборотов вентилятора от температуры двигателя.
3.Более стабильный температурный диаппазон двигателя(держится в районе 85 градусов)

Сигнал управления берем от цепи датчика температуры приборной панели, а для надежности ставим эту систему в параллель штатной(правда при этом штатную систему нужно изменить — у штатной вентилятор коммутируется по «+», нам же нужно чтобы вентилятором управлял «-«)
В результате подгонки под наши требования схемы, получаем схему регулятора на 555 таймере работающем в режиме ФИМ(фазо импульсная модуляция) и транзисторах МОСФЕТ( МОСФЕТ-ключ показан в этой схеме упрощенно, на больших токах будет сильно нагреваться): для уменьшения нагрева нужно использовать несколько мосфетов повторяя цепочку R3-VT1 в параллель, количество транзисторов зависит от мощности вентилятора 200Вт — два транзистора, 300Вт — три транзистора, при больших мощностях возможно придется усиливать выходной какскад 555 таймера:
Важный момент:для равномерного распределения тока нагрузки по мосфетам используем провода сечения 1 — 1,5 кв.мм одинаковой длинны соединяя силовые выводы мосфетов с общими точками схемы.
Так как при работе вентилятора в цепи (акумулятор-вентилятор-регулятор-корпус»земля») течет значительный ток (30А) используем в этой цепи провода сечением не менее 6 кв.мм, а для обеспечения безопасности ставим в эту цепь 40А предохранитель.
Собираем все в корпусе от комутатора зажигания 402 двигателя и размещаем на левом крыле моторного отсека(благо крепёж для монтажа там есть штатно).

один из первых вариантов (из того что было под рукой)

Настройка: прогреваем двигатель до 85 градусов и вращением движка резистора R7 добиваемся включения вентилятора на половину его мощьности. Алгоритм работы устройства такой, что при повышении температуры двигателя обороты вентилятора повышаются, при понижении температуры обороты вентилятора уменьшаются. В дальнейшем нужно произвести подстройку так чтобы при 80-82 градусах вентилятор не включался.

Пы.Сы. Практика использования показала что работа устройства далека от совершенства и его эффективность сильно зависит от состояния радиатора (если теплоотдача радиатора «как у нового» то это устройство вполне способно «сбивать температуру» и штатная система включения вентилятора будет срабатывать крайне редко даже в 30 градусную жару, ну а если радиатор «подустал» то кроме плавного разгона вентилятора эта схема ничего более не даст), поэтому рекомендую использовать эту «поделку» только в параллель штатной системе включения вентилятора.
05.2015 Глюк
За время эксплуатации окислились контакты «минусового» провода подключения к бортовой сети — уши корпуса коммутатора, ключи замерли в открытом состоянии и конечно вентилятор закрутился на макс.оборотах «на постоянку». Чистка контактов и установление надежной «массы» вернуло устройство к нормальным режимам работы, но ненадолго. Причиной неисправности оказался один из мосфетов, виновника определил по цвету перегрева его сток-исток контактов.

…продолжаем развивать тему дальше:

01.2019 Доводим слабые места
Как оказалось слабых мест в схеме хватает, попытаемся их исправить:

#Управление МОСФЕТами
даже самая продвинутая версия 555 таймера чип LMC555 является «медленной» для управления транзисторами МОСФЕТ. Как это проявляется? — Транзисторы работают «не в полную силу» от чего склонны нагреваться и терять свой ресурс иногда доходя до пробоя. .

Исправляем введением в схему устройства чипа драйвера МОСФЕТ (TC4420)

#Улучшение реакции устройства на изменение температуры
в первоначальном исполнении обороты вентилятора нарастают с меньшей интенсивностью чем хотелось бы.

Простой регулятор скорости вращения вентилятора

изменяем цепь контроля температуры добавляя компаратор

теперь обороты вентилятора будут возрастать и спадать с большей интенсивностью.
Для понятия принципа действия: чем ближе 5-я нога таймера к «земле», тем ниже обороты вентилятора. На транзисторе А733 собран компаратор, как только напряжение на датчике становится ниже опорного (3.6В) транзистор начинает открываться тем самым закрывая транзистор на 5-ой ноге таймера, вентилятор начинает вращаться. Порог срабатывания подбирается величиной опорного напряжения. При опорном напряжении 3.6В температура охлаждающей жидкости удерживается в пределах 80-85С.

Источник опорного напряжения.

Чтобы иметь возможность подстройки опорного напряжения( для того что бы летом и зимой выставлять разный порог срабатывания вентилятора), в качестве источника используем TL431. Резистором (*) подбирается максимальный предел опорного напряжения. Максимальное опорное напряжение обязательно должно быть меньше 5 вольт, иначе велика вероятность спалить транзистор компаратора.

Далее фото платы в разных стадиях готовности, чисто для наглядности монтажа компонентов

Полный размер

собранная плата, вариант с фиксированным опорным напряжением

Полный размер

ещё сырая не отлаженная, будут переделки при доводке

Полный размер

примерка в корпус от коммутатора, мосфеты через изолирующие термоподкладки установлены на корпус коммутатора

Завершенный, доведенный до рабочего состояния вариант

#Для «Рукастых»: печатная плата в формате Sprint-Layout 4.0 onedrive.live.com/?id=621…3970&cid=621F7DDAC07B7295

Порядок первичной настройки:
1) замеряем характеристику датчика температуры (напряжение/температура)
2) к значению напряжения необходимой нам температуры добавляем 0.6В(насыщение транзистора А733) и получаем соответствующее этой температуре значение опорного напряжения.
3) подаем питание на схему и выставляем потенциометром необходимое опорное напряжение на эмитере транзистора А733,
настройка закончена, можно устанавливать блок в машину.

Нередко в домашнем хозяйстве требуется установка регулятора скорости вращения вентилятора. Сразу следует отметить, что обычный диммер для регулировки яркости освещения не подойдет для вентилятора.

Способы регулировки скорости вращения бытовых вентиляторов

Существует достаточно много различных способов регулировки частоты вращения вентилятора, но практически применяются в домашних условиях только два из них. В любом случае Вы сможете только понизить число оборотов вращения двигателя только ниже максимально возможной по паспорту к устройству.

Разогнать электродвигатель возможно только с использованием частотного регулятора, но он не применяется в быту, потому что у него высокая как собственная стоимость, так и цена на услугу по его установке и наладке. Все это делают использование частотного регулятора не рациональным в домашних условиях.

К одному регулятору допускается подключение нескольких вентиляторов, если только их суммарная мощность не будет превышать величину номинального тока регулятора. Учитывайте при выборе регулятора, что пусковой ток электродвигателя в несколько раз выше рабочего.

Способы регулировки вентиляторов в быту:

  1. С использованием симисторного регулятора скорости вентилятора- это самый распространенный способ, позволяющий постепенно увеличивать или уменьшать скорость вращения в пределах от 0 до 100 %.
  2. Если электродвигатель вентилятора на 220 Вольт оборудован термозащитой (защитой от перегрева), тогда для управления оборотами применяется тиристорный регулятор.
  3. Наиболее эффективным методом регулировки скорости вращения электродвигателя является применение моторов с несколькими выводами обмоток. Но многоскоростные электродвигатели в бытовых вентиляторах Я пока не встречал. Но В интернете можно найти схемы подключения для них.

Очень часто электродвигатель гудит на низких оборотах при использовании первых двух методов регулировки- старайтесь не эксплуатировать долго вентилятор в таком режиме. Если снять крышку, то при помощи находящегося под ней специального регулятора, Вы сможете, его вращая, установить нижний предел частоты вращения мотора.

Схема подключения симисторного или тиристорного регулятора скорости вентилятора

Практически во всех регуляторах стоят внутри плавкие ставки, защищающие их от токов перегрузки или короткого замыкания, при возникновении которых она перегорает. Для восстановления работоспособности необходимо будет заменить или отремонтировать плавкую ставку.

Подключается регулятор довольно просто, как обычный выключатель. На первый контакт (с изображением стрелки) подключается фаза от электропроводки квартиры. На второй (с изображением стрелки в обратном направлении) при необходимости подключается прямой вывод фазы без регулировки. Он используется для включения, например дополнительно освещения при включении вентилятора. На пятый контакт (с изображением наклонной стрелки и синусоиды) подключается фаза, отходящая на вентилятор. При использовании такой схемы необходимо использовать для подключения распределительную коробку, с которой Ноль и при необходимости Земля заводятся напрямую на вентилятор, минуя сам регулятор, для подключения которого понадобится всего-то 2 провода.

Но если распределительная коробка электропроводки находится далеко, а сам регулятор стоит рядом с вентилятором, тогда рекомендую использовать вторую схему. На регулятор приходит кабель электропитания, а затем с него уходит сразу на вентилятор. Фазные провода подключаются аналогично. А 2 нуля садятся на контакты № 3 и № 4 в любой последовательности.

Подключение регулятора скорости вращения вентилятора довольно просто сделать и своими руками, не вызывая специалистов. Обязательно изучите и всегда соблюдайте правила электробезопасности- работайте только на обесточенном участке электропроводки.

Регулятор оборотов кулера

Шум, издаваемый вентиляторами в современных компьютерах довольно сильный, и это является достаточно распространенной проблемой среди пользователей. Помочь в снижении шума, издаваемого компьютерными вентиляторами системного блока, может регулятор частоты вращения вентилятора или кулера, так как шум, издаваемый вентиляторами сильно зависит от его скорости вращения.

В продаже имеются различные регуляторы, имеющие разнообразные дополнительные функции и возможности (контроль температуры кулера, автоматическую регулировку скорости вентилятора, в зависимости от температуры и т.д.).

Уменьшить скорость кулера самостоятельно совсем не сложно,

достаточно изготовить простой регулятор скорости вращения вентилятора, схема которого приведена ниже, при этом не нужно иметь каких либо специальных знаний в области электроники, достаточно уметь владеть паяльником и следовать несложной инструкции.

В этой статье я расскажу Вам как самостоятельно, при минимальных затратах, сделать регулятор оборотов для компьютерного вентилятора, или как его ещё по другому называют — реобас.

Схема регулятора оборотов вентилятора.

Для начала я приведу на рисунке принципиальную схему регулятора оборотов вентилятора:

Схема достаточно простая, и содержит всего три электронных компонента: транзистор, резистор, и переменный резистор. Эта схема — как бы, регулятор напряжения, подаваемого на двигатель вентилятора, изменяя напряжение, Мы изменяем частоту вращения вентилятора. При этом у нас появляется возможность уменьшать скорость вращения вентилятора кулера, что приводит к снижению шума, издаваемого им.

В схему специально введён постоянный резистор R2, назначение которого ограничить минимальные обороты вентилятора, для того, что бы даже при самых низких оборотах обеспечить его надёжный запуск. Иначе может произойти ситуация, при которой неопытный пользователь поставит низкое напряжение на вентиляторе, при котором он будет продолжать крутиться на маленьких оборотах, но которого будет недостаточно для его запуска при включении.

Детали.

В схеме применен довольно распространенный транзистор КТ815, его несложно приобрести на радио рынке, или даже выпаять из старой советской аппаратуры. Подойдет любой транзистор из серии КТ815, КТ817 или КТ819, с любой буквой в конце.

Переменный резистор, применяемый в схеме, может быть совершенно любым, подходящим по габаритам, главное, он должен иметь сопротивление 1кОм.

Постоянный резистор может быть любого типа и мощности (но чем меньше, тем лучше), главное, что бы он имел сопротивление 1 или 1.2 кОм.

Дополнительно стоит отметить, что если у Вас возникнут трудности с приобретением переменного резистора необходимого сопротивления, то в схеме можно применить переменный резистор R1 сопротивлением от 470 Ом до 4,7 кОм, но при этом придётся изменить и сопротивление резистора R2, оно должно быть таким же, как и у R1.

Монтаж и подключение регулятора скорости.

Монтаж всей схемы осуществляется прямо на ножках переменного резистора, и проводится очень просто (см. фото):

Подключается наш регулятор оборотов в разрыв красного провода питания вентилятора кулера (цепь +12В), как показано на рисунке.

Внимание! Если у вашего вентилятора имеется 4 вывода, и их расцветка: черный, желтый, зелёный и синий (у таких 4-х выводных плюс питания на них подаётся по желтому проводу), то регулятор включается в разрыв желтого провода.

Готовый, собранный регулятор оборотов вентилятора устанавливается в любом удобном месте системного блока, например, спереди в заглушке, пятидюймового отсека, или сзади в заглушке плат расширения.

Регулятор оборотов кулера своими руками КР198НТ11

Для этого сверлится отверстие, необходимого диаметра для применяемого Вами переменного резистора, далее он вставляется в него и затягивается специальной, идущей с ним в комплекте гайкой. На ось переменного резистора, можно надеть подходящую ручку, например от старой советской аппаратуры.

Стоит заметить, что если транзистор в Вашем регуляторе будет сильно нагреваться (например, при большой потребляемой мощности вентилятором кулера или если через него подключено сразу несколько вентиляторов), то его следует установить на небольшой радиатор. Радиатором может служить кусочек алюминиевой или медной пластины толщиной 2 — , длиной и шириной . Но как показала практика, если к регулятору подключен обычный компьютерный вентилятор с потребляемым током 0.1 — 0.2 А, то в радиаторе нет необходимости, так как транзистор нагревается совсем незначительно.

Так как вентиляторов в системном блоке несколько, то и таких регуляторов оборотов, можно изготовить, столько, сколько Вам необходимо. Разместив их рядом, Вы сможете с удобством управлять скоростью вращения вентиляторов, а соответственно и издаваемым шумом системного блока, таким образом, получатся бесшумные вентиляторы.

Вентилятор является одним из малозаметных, но чрезвычайно важных приборов, помогающих создавать благоприятные условия для работы, отдыха и просто приятного проведения времени.

Без него не смогут функционировать компьютеры, холодильники, кондиционеры и другая техника. Для максимально эффективной работы различных устройств используют регулятор скорости вращения вентилятора.

Из нашего материала вы узнаете о том, какие бывают регуляторы, особенностях их работы. Также мы расскажем, как своими руками собрать прибор и что для этого потребуется.

Виды и особенности устройства

Существует множество видов вентиляторов, они задействованы в работе систем климат-контроля, компьютеров, ноутбуков, холодильников, многой другой офисной и бытовой техники.

Чтобы контролировать скорость вращения его лопастей, часто применяется небольшой элемент – регулятор. Именно он позволяет продлить срок использования оборудования, а также, значительно снизить уровень шума в помещении.

Назначение прибора для управления скоростью

Когда кондиционер или вентилятор постоянно работает в режиме максимальной мощности, предусмотренной производителем, это неблагоприятно сказывается на сроке эксплуатации. Отдельные детали просто не могут выдержать такой ритм и быстро ломаются.

Поэтому часто можно встретить рекомендации делать запас по мощности при выборе различного рода оборудования, чтобы оно не работало на пределе.

Для замедления скорости вращения вентилятора применяют регулятор. Причем, есть модели, обслуживающие как одно, так и несколько каналов одновременно. Например, 6-канальный

Также часто в холодильных установках, компьютерах и другой технике определенные элементы перегреваются в процессе работы. Чтобы они не расплавились, производитель предусмотрел их охлаждение за счет работающих вентиляторов.

Но не все выполняемые задачи требуют максимальной скорости движения вентилятора/кулера. При офисной работе компьютера или поддержании постоянной температуры в холодильной установке нагрузка значительно меньше, чем при выполнении сложных математических вычислений или заморозке соответственно. А вентилятор, не имеющий регулятора, будет вращаться с одинаковой скоростью.

Производители предлагают различные модели регуляторов, которые можно установить своими руками, используя рекомендации из инструкции

Скопление большого количества мощной техники, функционирующей в одном помещении, способно создавать шум на уровне 50 децибел и более за счет одновременно работающих вентиляторов на максимальных оборотах.

В такой атмосфере человеку сложно работать, он быстро утомляется. Поэтому целесообразно использовать приборы, способные снизить уровень шума вентилятора не только в производственных цехах, но и в офисных помещениях.

Помимо перегрева отдельных деталей и снижения уровня шума регуляторы позволяют рационально использовать технику, уменьшая и увеличивая при необходимости скорость вращения лопастей оборудования. Например, в системах климат-контроля, используемого во многих общественных местах и производственных помещениях.

Одной из важных деталей умных приборов потолочного вентилирования помещения являются регуляторы оборотов. Их работу обеспечивают показатели датчиков температуры, влажности, давления. Вентиляторы, используемые для перемешивания воздуха в помещении спортзала, производственного цеха или офисного кабинета, помогают экономить средства, затрачиваемые на отопление.

В мощных системах вентилирования используются трансформаторные регуляторы оборотов. Их основной недостаток – высокая стоимость

Это происходит за счет равномерного распределения нагретого воздуха, циркулирующего в помещении. Вентиляторы нагнетают верхние теплые слои вниз, перемешивая их с более холодными нижними. Ведь для комфорта человека важно, чтобы в нижней части комнаты, а не под потолком, было тепло.

3 лучшие схемы регуляторов скорости вентиляторов

Регуляторы в таких системах следят за скоростью вращения, замедляя и ускоряя скорость движения лопастей.

Основные разновидности регуляторов

Контроллеры оборотов вентилятора востребованы. Рынок изобилует различными предложениями и рядовому пользователю, не знакомому с особенностями устройств, легко потеряться среди различных предложений.

Выбирать регулятор следует с учетом мощности оборудования, к которому его предстоит присоединять

Регуляторы отличаются по принципу действия.

Выделяют такие типы устройств:

  • тиристорные;
  • симисторные;
  • частотные;
  • трансформаторные.

Первый тип приборов применяется для корректировки оборотов однофазных приборов, имеющих защиту от перегрева. Изменение скорости происходит за счет влияния регулятора на мощность подаваемого напряжения.

Второй тип является разновидностью тиристорных устройств. Регулятор может одновременно управлять приборами постоянного и переменного тока. Характеризуется возможностью плавного понижения/повышения скорости оборотов при напряжении вентилятора до 220 В.

Для управления скоростью движения 2-х и более вентиляторов можно воспользоваться 5-канальным регулятором

Третий тип устройств изменяет частоту подаваемого напряжения. Основная задача – получить питающее напряжение в пределах 0-480 В. Контроллеры применяются для трехфазного оборудования в системах вентилирования помещений и в мощных кондиционерах.

Трансформаторные контроллеры могут работать с одно- и трехфазным током. Они изменяют выходное напряжение, регулируя работу вентилятора и защищая прибор от перегрева. Могут использоваться в автоматическом режиме для регулировки оборотов нескольких мощных вентиляторов, учитывая показатели датчиков давления, температуры, влажности и прочие.

Трансформаторные регуляторы надежные. Они способны работать в сложных системах, регулируя обороты вентилятора без постоянного вмешательства пользователя

Чаще всего в быту применяются симисторные регуляторы. Их относят к типу XGE. Можно обнаружить много предложений от разных производителей – они компактные и надежные. Причем диапазон цен также будет весьма широк.

Трансформаторные же устройства довольно дорогие – в зависимости от дополнительных возможностей они могут стоить 700 долларов и более. Они относятся к регуляторам типа RGE и способны регулировать обороты очень мощных вентиляторов, используемых в промышленности.

Особенности использования приборов

Регуляторы оборотов вентилятора используются в промышленном оборудовании, в офисных помещениях, спортзалах, кафе, других местах общественного пользования. Также часто можно встретить такие контролеры в системах климат-контроля для домашнего использования.

Чтобы воспользоваться прибором изменения скорости, достаточно его просто подключить к вентилятору

Системы вентилирования, используемые в фитнес-центрах, а также, кондиционеры, включаемые для обогрева в офисных помещениях, чаще всего содержат регулятор скорости вращения. Причем это не простой дешевый вариант, а дорогостоящее трансформаторное устройство, способное регулировать скорость вращения мощных приборов.

В зависимости от конструкционных особенностей контроллеры бывают:

  • механического управления;
  • автоматического.

Автотрансформаторные регуляторы чаще всего применяются в сложных системах, где командой к действию служат показатели, полученные от датчика температуры, давления, движения, влажности или фотодатчика. Замедляя скорость вращения, устройства позволяют уменьшить потребление энергии.

Регуляторы с механическим управлением подключаются согласно инструкции и схеме. Ими можно заменить привычный выключатель, вмонтировав контроллер в стену

Механическое управление контроллерами осуществляется вручную – прибор содержит колесико, позволяющее плавно или ступенчато менять скорость вращения. Это часто можно встретить в симисторных моделях.

Среди регуляторов, использующихся для оптимизации работы промышленного и бытового оборудования, можно отметить такие устройства, как Vents, СеВеР, Vortice, ЭнерджиСейвер, Delta t°, Telenordik и другие.

Наиболее распространенный вариант применения регулирующего оборудования в бытовых условиях – компьютер и ноутбук. Именно здесь чаще всего используется регулятор, контролирующий и изменяющий обороты кулера. За счет этого устройства техника создает значительно меньше шума во время работы.

Для компьютеров можно подобрать самый подходящий вариант исходя из личных предпочтений – предложений на рынке огромное количество

Контроллеры для кулера бывают как простые, так и с дополнительными возможностями. Это могут быть модели с подсветкой, с датчиком температуры, с сигналом оповещения, с аварийным отключением и др.

По внешнему виду выделяют регуляторы с дисплеем и без. Первый вариант более дорогостоящий, а второй – дешевле. Это устройство часто называют реобас.

Производители предлагают модели, контролирующие работу одного или нескольких вентиляторов. Хорошими отзывами пользуются регуляторы скорости кулеров таких компаний, как Scythe, NZXT, Reeven, AeroCool, Aqua Computer, Strike-X Advance Black, Akasa Fan Controller, Cooler Master, Innovatek, Gelid, Lian Li и др.

Регулятор для кулера, не имеющий дисплея, стоит значительно дешевле. Но дополнительных функций у него нет

Использование контроллера в работе компьютера существенно снижает уровень шума, что положительно влияет на самочувствие и настроение пользователя – ничего не гудит и не ревет. Также, что немало важно, помогает избежать перегревания самой техники, продлевая этим ее срок службы.

Правила подключения контроллера

Чтобы подключить регулятор оборотов вентилятора, можно воспользоваться услугами специалистов или попытаться справиться своими силами. Принципиальных особенностей в подключении нет – вполне реально справиться с такой задачей своими силами.

Все добросовестные производители обязательно прилагают инструкцию по использованию и монтажу своей продукции

В зависимости от конструкционных особенностей и типа обслуживаемого оборудования контролеры могут устанавливаться:

  • на стену, как накладная розетка;
  • внутрь стены;
  • внутрь корпуса оборудования;
  • в специальный шкаф, управляющий умными устройствами дома. Это, как правило, клеммная колодка;
  • подсоединяться к компьютеру.

Чтобы собственноручно подключить регулятор, предстоит сначала внимательно ознакомиться с инструкцией, предлагаемой производителем. Такой документ обычно идет в комплекте с прибором и содержит полезные рекомендации как по подключению, так по использованию и обслуживанию.

Настенные и внутристенные модели предстоит крепить шурупами и дюбелями к стене. Комплектующие чаще всего поставляются производителем вместе с основным прибором. Также в инструкции к регулятору можно увидеть схему его подключения. Это значительно облегчит дальнейшие работы по правильной его установке.

Схемы по подключению регуляторов у различных производителей могут отличаться. Поэтому следует внимательно изучить рекомендации перед монтажом

Регулятор скорости подсоединяется к кабелю, питающему вентилятор, согласно схеме производителя. Основная цель – разрезать провод фазы, ноля и земли и подсоединить провода к входному и выходному клеммникам, соблюдая рекомендации. В случае, когда вентилятор имеет свой отдельный выключатель, его предстоит заменить на регулятор, демонтировав первый по ненадобности.

Не стоит забывать, что сечение у питающего и соединительного кабелей должно соответствовать максимальному току напряжения подключаемого прибора.

Важно отыскать на подключаемом приборе входные и выходные отверстия для подведения питающего кабеля соответствующего сечения. В этом поможет схема, прилагаемая производителем

Если предстоит подключать контроллер к ПК, то сначала предстоит узнать, какая предельно допустимая температура отдельных составляющих техники. В противном случае можно безвозвратно потерять компьютер, у которого перегреются и сгорят важные детали – процессор, материнская плата, графическая карта и прочие.

Модель выбранного реобаса также имеет инструкцию и рекомендации по подключению от изготовителя. Важно придерживаться схем, приведенных на ее страницах при самостоятельной установке прибора.

Если есть потребность подключать более 1-го вентилятора, то можно купить многоканальный реобас

Бывают встроенные в корпус регуляторы и устройства, которые покупаются отдельно. Чтобы их подключить правильно, следует придерживаться инструкций.

Например, встроенный контроллер имеет кнопки включения/выключения снаружи системного блока. Провода, идущие от регулятора, соединяются с проводами кулера. В зависимости от модели реобас может контролировать обороты 2, 4 и более вентиляторов параллельно.

Для вентиляторов компьютера и других, используемых в домашних условиях, можно собственноручно изготовить регулятор

Отдельный регулятор для кулера устанавливается в 3,5 или 5,25-дюймовые отсек. Его провода также подключаются к кулерам, а дополнительные датчики, если они идут в комплекте, присоединяются к соответствующим компонентам системного блока, за состоянием которого им предстоит следить.

Сборка прибора своими руками

Регулятор оборотов вентилятора можно собрать своими силами. Для этого понадобятся простейшие составляющие, паяльник и немного свободного времени.

Чтобы изготовить своими руками контроллер, можно использовать различные комплектующие, выбрав наиболее приемлемый для себя вариант

Так, для изготовления простого контроллера предстоит взять:

  • резистор;
  • переменный резистор;
  • транзистор.

Базу транзистора предстоит припаять к центральному контакту переменного резистора, а коллектор – к его крайнему выводу. К другому краю переменного резистора нужно припаять резистор сопротивлением 1 кОм. Второй вывод резистора следует припаять к эмиттеру транзистора.

Схема изготовления регулятора, состоящего из 3-х элементов, наиболее простая и безопасная

Теперь остается припаять провод входного напряжения к коллектору транзистора, который уже скреплен с крайним выводом переменного резистора, а «плюсовой» выход – к его эмиттеру.

Для проверки самоделки в действии понадобится любой рабочий вентилятор. Чтобы оценить самодельный реобас, предстоит подсоединить провод, идущий от эмиттера, к проводу вентилятора со знаком «+». Провод выходного напряжения самоделки, идущий от коллектора, присоединяется к блоку питания.

Окончив собирать самодельный прибор для регулировки оборотов, обязательно его нужно проверить в работе

Провод со знаком «–» подсоединяется напрямую, минуя самодельный регулятор. Теперь остается проверить в действии спаянный прибор.

Для уменьшения/увеличения скорости вращения лопастей кулера нужно крутить колесо переменного резистора и наблюдать изменение количества оборотов.

При желании можно своими руками создать контроллер, управляющий сразу 2-мя вентиляторами

Это самодельное устройство безопасно для использования, ведь провод со знаком «–» идет напрямую. Поэтому вентилятору не страшно, если в спаянном регуляторе вдруг что-то замкнет.

Такой контролер можно использовать для регулировки оборотов кулера, вытяжного вентилятора и других.

Управляем кулером (термоконтроль вентиляторов на практике)

Тем, кто использует компьютер каждый день (и особенно каждую ночь), очень близка идея Silent PC. Этой теме посвящено много публикаций, однако на сегодняшний день проблема шума, производимого компьютером, далека от решения. Одним из главных источников шума в компьютере является процессорный кулер.

При использовании программных средств охлаждения, таких как CpuIdle, Waterfall и прочих, или же при работе в операционных системах Windows NT/2000/XP и Windows 98SE средняя температура процессора в Idle-режиме значительно понижается. Однако вентилятор кулера этого не знает и продолжает трудиться в полную силу с максимальным уровнем шума. Конечно, существуют специальные утилиты (SpeedFan, например), которые умеют управлять оборотами вентиляторов. Однако работают такие программы далеко не на всех материнских платах. Но даже если и работают, то, можно сказать, не очень разумно. Так, на этапе загрузки компьютера даже при относительно холодном процессоре вентилятор работает на своих максимальных оборотах.

Выход из положения на самом деле прост: для управления оборотами крыльчатки вентилятора можно соорудить аналоговый регулятор с отдельным термодатчиком, закрепленным на радиаторе кулера. Вообще говоря, существует бесчисленное множество схемотехнических решений для таких терморегуляторов. Но нашего внимания заслуживают две наиболее простых схемы термоконтроля, с которыми мы сейчас и разберемся.

Описание

Если кулер не имеет выхода таходатчика (или же этот выход просто не используется), можно построить самую простую схему, которая содержит минимальное количество деталей (рис. 1).


Рис. 1. Принципиальная схема первого варианта терморегулятора

Ещё со времен «четверок» использовался регулятор, собранный по такой схеме. Построен он на основе микросхемы компаратора LM311 (отечественный аналог — КР554СА3). Несмотря на то, что применен компаратор, регулятор обеспечивает линейное, а не ключевое регулирование. Может возникнуть резонный вопрос: «Как так получилось, что для линейного регулирования применяется компаратор, а не операционный усилитель?». Ну, причин этому есть несколько. Во-первых, данный компаратор имеет относительно мощный выход с открытым коллектором, что позволяет подключать к нему вентилятор без дополнительных транзисторов. Во-вторых, благодаря тому, что входной каскад построен на p-n-p транзисторах, которые включены по схеме с общим коллектором, даже при однополярном питании можно работать с низкими входными напряжениями, находящимися практически на потенциале земли. Так, при использовании диода в качестве термодатчика нужно работать при потенциалах входов всего 0.7 В, что не позволяют большинство операционных усилителей. В-третьих, любой компаратор можно охватить отрицательной обратной связью, тогда он будет работать так, как работают операционные усилители (кстати, именно такое включение и использовано).

В качестве датчика температуры очень часто применяют диоды. У кремниевого диода p-n переход имеет температурный коэффициент напряжения примерно -2.3 мВ/°C, а прямое падение напряжения — порядка 0.7 В. Большинство диодов имеют корпус, совсем неподходящий для их закрепления на радиаторе. В то же время некоторые транзисторы специально приспособлены для этого. Одними из таких являются отечественные транзисторы КТ814 и КТ815. Если подобный транзистор привинтить к радиатору, коллектор транзистора окажется с ним электрически соединенным. Чтобы избежать неприятностей, в схеме, где этот транзистор используется, коллектор должен быть заземлен. Исходя из этого, для нашего термодатчика нужен p-n-p транзистор, например, КТ814.

Можно, конечно, просто использовать один из переходов транзистора как диод. Но здесь мы можем проявить смекалку и поступить более хитро 🙂 Дело в том, что температурный коэффициент у диода относительно низкий, а измерять маленькие изменения напряжения достаточно тяжело. Тут вмешиваются и шумы, и помехи, и нестабильность питающего напряжения. Поэтому часто, для того чтобы повысить температурный коэффициент датчика температуры, используют цепочку последовательно включенных диодов. У такой цепочки температурный коэффициент и прямое падение напряжения увеличиваются пропорционально количеству включенных диодов. Но ведь у нас не диод, а целый транзистор! Действительно, добавив всего два резистора, можно соорудить на транзисторе двухполюсник, поведение которого будет эквивалентно поведению цепочки диодов. Что и сделано в описываемом терморегуляторе.

Температурный коэффициент такого датчика определяется отношением резисторов R2 и R3 и равен Tcvd*(R3/R2+1), где Tcvd — температурный коэффициент одного p-n перехода. Повышать отношение резисторов до бесконечности нельзя, так как вместе с температурным коэффициентом растет и прямое падение напряжения, которое запросто может достигнуть напряжения питания, и тогда схема работать уже не будет. В описываемом регуляторе температурный коэффициент выбран равным примерно -20 мВ/°C, при этом прямое падение напряжения составляет около 6 В.

Датчик температуры VT1R2R3 включен в измерительный мост, который образован резисторами R1, R4, R5, R6. Питается мост от параметрического стабилизатора напряжения VD1R7. Необходимость применения стабилизатора вызвана тем, что напряжение питания +12 В внутри компьютера довольно нестабильное (в импульсном источнике питания осуществляется лишь групповая стабилизация выходных уровней +5 В и +12 В).

Напряжение разбаланса измерительного моста прикладывается к входам компаратора, который используется в линейном режиме благодаря действию отрицательной обратной связи. Подстроечный резистор R5 позволяет смещать регулировочную характеристику, а изменение номинала резистора обратной связи R8 позволяет менять ее наклон. Емкости C1 и C2 обеспечивают устойчивость регулятора.

Смонтирован регулятор на макетной плате, которая представляет собой кусочек одностороннего фольгированного стеклотекстолита (рис.2).


Рис. 2. Монтажная схема первого варианта терморегулятора

Для уменьшения габаритов платы желательно использовать SMD-элементы. Хотя, в принципе, можно обойтись и обычными элементами. Плата закрепляется на радиаторе кулера с помощью винта крепления транзистора VT1. Для этого в радиаторе следует проделать отверстие, в котором желательно нарезать резьбу М3. В крайнем случае, можно использовать винт и гайку. При выборе места на радиаторе для закрепления платы нужно позаботиться о доступности подстроечного резистора, когда радиатор будет находиться внутри компьютера. Таким способом можно прикрепить плату только к радиаторам «классической» конструкции, а вот крепление ее к радиаторам цилиндрической формы (например, как у Orb-ов) может вызвать проблемы. Хороший тепловой контакт с радиатором должен иметь только транзистор термодатчика. Поэтому если вся плата целиком не умещается на радиаторе, можно ограничится установкой на нем одного транзистора, который в этом случае подключают к плате с помощью проводов. Саму плату можно расположить в любом удобном месте. Закрепить транзистор на радиаторе несложно, можно даже просто вставить его между ребер, обеспечив тепловой контакт с помощью теплопроводящей пасты. Еще одним способом крепления является применение клея с хорошей теплопроводностью.

При установке транзистора термодатчика на радиатор, последний оказывается соединенным с землей. Но на практике это не вызывает особых затруднений, по крайней мере, в системах с процессорами Celeron и PentiumIII (часть их кристалла, соприкасающаяся с радиатором, не имеет электрической проводимости).

Электрически плата включается в разрыв проводов вентилятора. При желании можно даже установить разъемы, чтобы не разрезать провода. Правильно собранная схема практически не требует настройки: нужно лишь подстроечным резистором R5 установить требуемую частоту вращения крыльчатки вентилятора, соответствующую текущей температуре. На практике у каждого конкретного вентилятора существует минимальное напряжение питания, при котором начинает вращаться крыльчатка. Настраивая регулятор, можно добиться вращения вентилятора на минимально возможных оборотах при температуре радиатора, скажем, близкой к окружающей. Тем не менее, учитывая то, что тепловое сопротивление разных радиаторов сильно отличается, может потребоваться корректировка наклона характеристики регулирования. Наклон характеристики задается номиналом резистора R8. Номинал резистора может лежать в пределах от 100 К до 1 М. Чем больше этот номинал, тем при более низкой температуре радиатора вентилятор будет достигать максимальных оборотов. На практике очень часто загрузка процессора составляет считанные проценты. Это наблюдается, например, при работе в текстовых редакторах. При использовании программного кулера в такие моменты вентилятор может работать на значительно сниженных оборотах. Именно это и должен обеспечивать регулятор. Однако при увеличении загрузки процессора его температура поднимается, и регулятор должен постепенно поднять напряжение питания вентилятора до максимального, не допустив перегрева процессора. Температура радиатора, когда достигаются полные обороты вентилятора, не должна быть очень высокой. Конкретные рекомендации дать сложно, но, по крайней мере, эта температура должна «отставать» на 5 — 10 градусов от критической, когда уже нарушается стабильность системы.

Да, еще один момент. Первое включение схемы желательно производить от какого-либо внешнего источника питания. Иначе, в случае наличия в схеме короткого замыкания, подключение схемы к разъему материнской платы может вызвать ее повреждение.

Теперь второй вариант схемы. Если вентилятор оборудован таходатчиком, то уже нельзя включать регулирующий транзистор в «земляной» провод вентилятора. Поэтому внутренний транзистор компаратора здесь не подходит. В этом случае требуется дополнительный транзистор, который будет производить регулирование по цепи +12 В вентилятора. В принципе, можно было просто немного доработать схему на компараторе, но для разнообразия была сделана схема, собранная на транзисторах, которая оказалась по объему даже меньше (рис. 3).


Рис. 3. Принципиальная схема второго варианта терморегулятора

Поскольку размещенная на радиаторе плата нагревается вся целиком, то предсказать поведение транзисторной схемы довольно сложно. Поэтому понадобилось предварительное моделирование схемы с помощью пакета PSpice. Результат моделирования показан на рис. 4.


Рис. 4. Результат моделирования схемы в пакете PSpice

Как видно из рисунка, напряжение питания вентилятора линейно повышается от 4 В при 25°C до 12 В при 58°C. Такое поведение регулятора, в общем, соответствует нашим требованиям, и на этом этап моделирования был завершен.

Принципиальные схемы этих двух вариантов терморегулятора имеют много общего. В частности, датчик температуры и измерительный мост совершенно идентичны. Разница заключается лишь в усилителе напряжения разбаланса моста. Во втором варианте это напряжение поступает на каскад на транзисторе VT2. База транзистора является инвертирующим входом усилителя, а эмиттер — неинвертирующим. Далее сигнал поступает на второй усилительный каскад на транзисторе VT3, затем на выходной каскад на транзисторе VT4. Назначение емкостей такое же, как и в первом варианте. Ну, а монтажная схема регулятора показана на рис. 5.

Рис. 5. Монтажная схема второго варианта терморегулятора

Конструкция аналогична первому варианту, за исключением того, что плата имеет немного меньшие размеры. В схеме можно применить обычные (не SMD) элементы, а транзисторы — любые маломощные, так как ток, потребляемый вентиляторами, обычно не превышает 100 мА. Замечу, что эту схему можно использовать и для управления вентиляторами с большим значением потребляемого тока, но в этом случае транзистор VT4 необходимо заменить на более мощный. Что же касается вывода тахометра, то сигнал тахогенератора TG напрямую проходит через плату регулятора и поступает на разъем материнской платы. Методика настройки второго варианта регулятора ничем не отличается от методики, приведенной для первого варианта.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *