Тверской Городской Форум

Статьи, обзоры и общение

Тепловые насосы вода вода

Содержание

Принцип работы и схема теплового насоса вода-вода.

При создании тепловых насосов для отопления используется природное низкопотенциальное тепло воздушных масс, почвы и воды. Водяные виды поглощают тепловую энергию из скважин, колодцев, прудов и других открытых водоемов. Тепловой насос работает подобно холодильнику, который забирает тепло из холодильной камеры и выводит его наружу через внешний радиатор.

При монтаже первичный теплообменник с циркулирующим теплоносителем помещают в емкость с водой, из которой забирается тепло. Вода всасывается водяной помпой, проходит по системе труб и далее поступает в испаритель — в устройстве при нагреве жидкости происходит ее испарение. В испарителе теплоноситель передает тепло фреону, для которого небольшая положительная температура 6 — 8 С является точкой кипения, и газообразный хладагент поступает в компрессор.

Там происходит его сжатие, приводящее к повышению температуры газа, и дальнейшая подача в конденсатор. В конденсаторе тепловая энергия от газа с температурой 40 — 70 С передается воде в системе отопления, охлажденный газ конденсируется и попадает в редукционный клапан (дроссель). Его давление понижается — это приводит к большему охлаждению газа до жидкообразного состояния, в котором он снова подается в испаритель. Система работает в круговом замкнутом циклическом режиме.

Комплектующие для системы отопления с тепловым насосом при самостоятельном изготовлении

Обычному домовладельцу довольно сложно конкурировать с промышленными тепловыми насосами отечественного и зарубежного производителя, тем не менее его монтаж и изготовление отдельных узлов не являются невыполнимыми работами. Основной задачей при устройстве теплового насоса остается правильность расчетов, ведь при ошибке система может иметь низкий КПД и стать неэффективной.

Компрессор

Для монтажа понадобится новый или б.у. компрессор в рабочем состоянии с невыработанным ресурсом подходящей мощности. Обычная мощность компрессора должна составлять 20 — 30% от расчетной, можно использовать стандартные заводские агрегаты для холодильников или кондиционеров спирального принципа действия, обладающие более высоким КПД по сравнению с поршневыми устройствами.

Испаритель и конденсатор

Для охлаждения и нагрева жидкостей их обычно пропускают через медные трубы, помещенные в емкость с теплообменником. Для увеличения площади охлаждения медная труба располагается в виде спирали, необходимая длина рассчитывается по формуле вычисления площади с делением на сечение. Объем теплообменного бака рассчитывается исходя из реализации эффективного теплообмена, обычное среднее значение — около 120 л. Для теплового насоса рационально использовать трубы для кондиционеров, которые изначально имеют спиральную форму и реализуются в бухтах.

Данный способ конструкции теплообменников многие изготовители тепловых насосов своими руками заменили на более компактный, используя теплообмен по принципу «труба в трубе». Стандартный диаметр пластиковой трубы для испарителя — 32 мм., в нее помещается медная труба диаметром 19 мм., испаритель термоизолируется, общая длина теплообменника около 10 — 12 м. Для конденсатора можно использовать 25 мм. металлопластиковую трубу и 12,7 мм. медную.

Для увеличения площади и эффективности работы теплообменника некоторые умельцы скручивают косу из нескольких медных труб малого диаметра, перекладывают их тонкой проволокой и помещают конструкцию в пластик. Это позволяет получить на 10-метровом отрезке площадь теплообмена около 1 кубического метра.

Терморегулирующий вентиль

Правильно подобранное устройство регулирует степень заполнения испарителя и в большой степени отвечает за производительность всей системы. К примеру, если поступление хладагента слишком велико, он не успеет полностью испариться, и в компрессор будут попадать капли жидкости, приводящие к нарушению его работы и понижению температуры газа на выходе. Слишком малое количество фреона в испарителе после увеличения температуры в компрессоре будет недостаточно для прогрева необходимого объема воды.

Датчики

Для удобства пользования, контроля работы, обнаружения неисправностей и настройки системы необходимо наличие встроенных температурных датчиков. Информация важна на всех этапах функционирования системы, только с ее помощью по формулам можно установить важнейший параметр смонтированного оборудования для водяных тепловых насосов — показатель эффективности СОР.

Насосное оборудование

При работе тепловых насосов забор и подача воды из скважины, колодца или открытого водоема происходит при помощи водяных помп. Могут использоваться погружные или поверхностные виды, обычно их мощность невелика, для подачи воды достаточно 100 — 200 Вт. Для контроля работы, защиты насосов и системы дополнительно монтируются фильтры, манометр, водяные счетчики и простейшая автоматика.

Сборка теплового насосного оборудования своими руками не представляет больших трудностей при умении обращаться со специальным инструментом для сварки и пайки меди. Выполненная работа поможет сэкономить значительные средства – затраты на комплектующие составят около 600 у.

Отопление дома. Схема отопления дома с тепловым насосом

В данной статье описаны варианты отопления дома и горячего водоснабжения с помощью теплового насоса, солнечного коллектора и кавитационного теплогенератора. Дана приближенная методика расчета теплового насоса и теплогенератора. Приведены примерная стоимость затрат для обогрева дома с помощью теплового насоса.

Тепловой насос. Конструкция обогрева дома

Чтобы понять его принцип действия можно посмотреть на обычный бытовой холодильник или кондиционер.

Современные тепловые насосы используют для своей работы низкопотенциальные источники тепла землю, грунтовые воды, воздух. И в холодильнике и в тепловом насосе действует один и тот же физический принцип (физики называют такой процесс циклом Карно ). Тепловой насос – устройство, которое «выкачивает» тепло из холодильной камеры и выбрасывает его на радиатор. Кондиционер «выкачивает» тепло из воздуха комнаты и выбрасывает ее на радиатор, но находящийся на улице. При этом к теплу, «высосанному» из комнаты, добавляется ещё тепло, в которое превратилась электрическая энергия, потреблённая электродвигателем кондиционера.

Число, выражающее отношение вырабатываемой тепловым насосом (кондиционером или холодильником) тепловой энергии к потребляемой им электрической энергии, специалисты по тепловым насосам называют «отопительным коэффициентом». В лучших тепловых насосах отопительный коэффициент достигает 3-4. То есть на каждый потреблённый электродвигателем киловатт-час электроэнергии вырабатывается 3-4 киловатт-часа тепловой энергии. (Один киловатт-час соответствует 860 килокалориям.) Этот коэффициент преобразования (отопительный коэффициент) напрямую зависит от температуры источника тепла, чем выше температура источника, тем больше коэффициент преобразования.

Кондиционер берёт эту тепловую энергию из воздуха улицы, а большие тепловые насосы «выкачивают» это дополнительное тепло обычно из водоема/подземных вод или грунта.

Хотя температура этих источников гораздо меньше, чем температура воздуха в обогреваемом доме, но и это низкотемпературное тепло грунта или воды, тепловой насос и превращает в высокотемпературное , необходимое для обогрева дома. Поэтому тепловые насосы называют ещё «трансформаторами тепла». (процесс превращения см. ниже)

Примечание: Тепловые насосы не только согревают дома, но и остужают воду в реке, из которой выкачивают тепло. А в наше время, когда реки слишком перегреты промышленными и бытовыми стоками, охлаждать реку очень полезно для жизни в ней живых организмов и рыбы. Чем ниже температура воды, тем больше в ней может раствориться кислорода, необходимого для рыбы. В тёплой воде рыба задыхается, а в холодной блаженствует.Поэтому тепловые насосы очень перспективны в деле спасения окружающей среды от ” теплового загрязнения “.

Но установка системы отопления с помощью тепловых насосов пока слишком дорога, потому что требуются большое количество земляных работ плюс расходных материалов, например, труб для создания коллектора/теплообменника.

Так же стоит помнить что в тепловых насосах, как и в обычных холодильниках, используется компрессор, сжимающий рабочее тело – аммиак или фреон. На фреоне тепловые насосы работают лучше, но фреон уже запрещён к применению из-за того, что он, попадая в атмосферу, выжигает в её верхних слоях озон, защищающий Землю от ультрафиолетовых лучей Солнца.

И все-таки мне кажется, что будущее за тепловыми насосами. Но их, никто пока не производит массово. Почему? Не трудно догадаться.

Если появляется альтернативный источник дешевой энергии, то куда девать добываемый газ, нефть и уголь, кому его продавать. А на что списывать многомиллиардные убытки от взрывов на шахтах и рудниках.

Принципиальная схема обогрева дома с помощью теплового насоса

1 – тепловой насос; 2 – трубопровод, уложенный в земле; 3 – бойлер косвенного нагрева; 4 – система отопления «теплый пол»; 5 – контур подачи горячей воды.

Принцип действия теплового насоса

В качестве источника низкопотенциального тепла может выступать наружный воздух, имеющий температуру от –15 до +15°С, воздух отводимый из помещения с температурой 15–25°С, подпочвенные (4–10°С) и грунтовые (более 10°C) воды, озерная и речная вода (0–10°С), поверхностный (0–10°С) и глубинный (более 20 м) грунт (10°С). В Нидерландах, например, в городе Херлен (Heerlen) для этих целей используется затопленная шахта. Вода, наполняющая старую шахту, на уровне 700 метров имеет постоянную температуру в 32°C.

В случае использования в качестве источника тепла атмосферного или вентиляционного воздуха, система отопления работает по схеме «воздух–вода». Насос может быть расположен внутри или снаружи помещения. Воздух подается в его теплообменник с помощью вентилятора.

Если в качестве источника тепла используются грунтовые воды, то система работает по схеме «вода–вода». Вода подается из скважины с помощью насоса в теплообменник насоса, а после отбора тепла, сбрасывается либо в другую скважину, либо в водоем. В качестве промежуточного теплоносителя можно использовать антифриз или тосол. Если в качестве источника энергии выступает водоем, на его дно укладывается петля из металлопластиковой или пластиковой трубы. По трубопроводу циркулирует раствор гликоля (антифриз) или тосола который через теплообменник теплового насоса передает тепло фреону.

При использовании в качестве источника тепла грунта, система работает по схеме «грунт-вода». Возможны два варианта устройства коллектора – вертикальный и горизонтальный.

  • При горизонтальном расположении коллектора, металлопластиковых трубы укладывают в траншеи глубиной 1,2–1,5 м или в виде спиралей в траншеи глубиной 2–4 м. Такой способ укладки позволяет значительно уменьшить длину траншей.

Схема теплового насоса при горизонтальном коллекторе со спиральной укладкой труб

1 – тепловой насос; 2 – трубопровод, уложенный в земле; 3 – бойлер косвенного нагрева; 4 – система отопления «теплый пол»; 5 – контур подачи горячей воды.

Однако при укладке спиралью сильно увеличивается гидродинамическое сопротивление, что приводит к дополнительным затратам на прокачку теплоносителя, так же сопротивление увеличивается по мере увеличения длины труб.

  • При вертикальном расположении коллектора трубы укладывают в вертикальные скважины на глубину 20–100 м.

Схема вертикального зонда

Фото зонда в бухте

Установка зонда в скважину

Расчет горизонтального коллектора теплового насоса

Расчет горизонтального коллектора теплового насоса.

q – удельный теплосъем (с 1 м пог. трубы).

  • сухой песок – 10 Вт/м,
  • сухая глина – 20 Вт/м,
  • влажная глина – 25 Вт/м,
  • глина с большим содержанием воды – 35 Вт/м.

Между прямой и обратной петлей коллектора появляется разность температур теплоносителя.

Обычно для расчета ее принимают равной 3°С . Недостатком такой схемы является то, что на участке над коллектором не желательно возводить строений, чтобы тепло земли пополнялось за счет солнечной радиации. Оптимальная дистанция между трубами считается 0,7–0,8 м. При этом длина одной траншеи выбирается от 30 до 120 м.

Пример расчета теплового насоса

Я приведу примерный расчет теплового насоса для нашего экодома, описанного в статье Экодом. Теплоснабжение экодома.

Считается, что для обогрева дома с высотой потолка 3 м, необходимо расходовать 1 кВт. Тепловой энергии на 10 м2 площади. При площади дома 10х10м=100 м2, необходимо 10кВт тепловой энергии.

При использовании теплого пола, температура теплоносителя в системе , должна быть 35°С, а минимальная температура теплоносителя – 0°С.

Таблица 1. Данные теплового насоса Thermia Villa.

Для обогрева здания нужно выбирать тепловой насос мощностью 15,6 кВт (ближайший больший типоразмер), расходующий на работу компрессора 5 кВт. Выбираем по типу грунта теплосъем с поверхностного слоя грунта. Для (влажной глины) q равняется 25 Вт/м.

Рассчитаем мощность теплового коллектора:

Qo – мощность теплового коллектора , кВт;

Qwp – мощность теплового насоса , кВт;

P – электрическая мощность компрессора , кВт.

Требуемая тепловая мощность коллектора составит:

Теперь определим суммарную длину труб:

L=Qo/q, где q – удельный (с 1 м. пог. трубы) теплосъем, кВт/м.

L=10,6/0,025 = 424 м.

Для организации такого коллектора потребуется 5 контуров длиной по 100 м. Исходя из этого, определим необходимую площадь участка для укладки контура.

A=Lхda, где da – расстояние между трубами (шаг укладки), м.

При шаге укладки 0,75 м необходимая площадь участка составит:

Расчет вертикального коллектора

При выборе вертикального коллектора, бурят скважины глубиной от 20 до 100 м. В них погружаются U-образные металлопластиковые или пластиковые трубы. Для этого в одну скважину вставляется две петли, которые заливается цементным раствором. Удельный теплосъем такого коллектора составляет 50 Вт/м.

Для более точных расчетов применяют следующие данные:

  • сухие осадочные породы – 20 Вт/м;
  • каменистая почва и насыщенные водой осадочные породы – 50 Вт/м;
  • каменные породы с высокой теплопроводностью – 70 Вт/м;
  • подземные воды – 80 Вт/м.

На глубинах более 15 м, температура грунта составляет примерно +10°С. Необходимо учитывать, что расстояние между скважинами должно быть больше 5 м. Если в грунте существуют подземные течения, то скважины необходимо бурить перпендикулярной потоку.

Таким образом, при удельном теплосъеме вертикального коллектора 50 Вт/м и требуемой мощности 10,6 кВт длина трубы L должна составить 212 м.

Для устройства коллектора необходимо пробурить три скважины глубиной по 75 м. В каждой из них размещаем по две петли из металлопластиковой трубы всего – 6 контуров по 150 м.

Работа теплового насоса при работе по схеме «Грунт-вода»

Трубопровод укладывается в землю. При прокачивании через него теплоносителя, последний нагревается до температуры грунта. Дальше по схеме вода поступает в теплообменник теплового насоса и отдает все тепло во внутренний контур теплового насоса.

Во внутренний контур теплонасоса закачан хладагент под давлением. В качестве хладагента используется фреон или его заменители, поскольку фреон разрушает озоновый слой атмосферы и запрещен к использованию в новых разработках. У хладагента низкая температура кипения и поэтому когда в испарителе резко снижается давление, он переходит из жидкого состояния в газ при низкой температуре.

После испарителя газообразный хладагент поступает в компрессор и сжимается компрессором. При этом он разогревается, и давление его повышается. Горячий хладагент поступает в конденсатор, где протекает теплообмен между ним и теплоносителем из обратного трубопровода. Отдавая свое тепло, хладагент охлаждается и переходит в жидкое состояние. Теплоноситель поступает в отопительную систему и снова охлаждаясь, передает свое тепло в помещение. Когда хладагент проходит через редукционный клапан ,его давление падает, и он снова переходит в жидкую фазу. После этого цикл повторяется.

В холодное время года теплонасос работает как обогреватель, а в жаркое время может использоваться для охлаждения помещения (при этом тепловой насос не подогревает, а охлаждает теплоноситель – воду. А охлажденная вода, в свою очередь может использоваться для охлаждения воздуха в помещении).

В общем случае, теплонасос представляет собой машину Карно, работающую в обратном направлении. Холодильник перекачивает тепло из охлаждаемого объема в окружающий воздух. Если поместить холодильник на улице, то, извлекая тепло из наружного воздуха и передавая его вовнутрь дома, то можно таким нехитрым способом, в какой-то степени, обогревать помещение.

Однако, как показывает практика, одного лишь теплового насоса для снабжения дома теплом и горячей водой недостаточно. Осмелюсь предложить оптимальную, на мой взгляд, схему отопления и горячего водоснабжения дома.

Предлагаемая схема снабжения дома теплом и горячей водой

1 – теплогенератор; 2 – солнечный коллектор; 3 – бойлер косвенного нагрева; 4 – тепловой насос; 5 – трубопровод в земле; 6 – циркуляционный блок гелиосистемы; 7 – радиатор отопления; 8 – контур подачи горячей воды; 9 – система отопления «теплый пол».

Данная схема предполагает одновременное использование трех источников тепла. Основную роль играет в ней теплогенератор (1), тепловой насос (4) и солнечный коллектор (2), которые служат вспомогательными элементами и способствуют снижению затрат потребляемой электроэнергии, как следствие, и повышению эффективности нагрева. Одновременное использование трех источников нагрева практически полностью исключает опасность размерзания системы .

Ведь вероятность выхода из строя одновременно и теплогенератора, и теплового насоса, и солнечного коллектора ничтожно мала. На схеме показаны два варианта обогрева помещений: радиаторы (7) и «теплый пол» (9). Это не значит, что надо использовать оба варианта, а лишь иллюстрирует возможность использования и одного и второго.

Принцип работы схемы отопления

Теплогенератор (1) подает нагретую воду в бойлер (3) и контур, состоящий из радиаторов отопления (7). Также в бойлер поступает нагретый теплоноситель от теплового насоса (4) и солнечного коллектора (2). Часть нагретой тепловым насосом воды также подается на вход теплогенератора. Смешиваясь с «обраткой» обогревающего контура, она повышает ее температуру. Это способствует более эффективному нагреву воды в кавитаторе теплогенератора. Нагретая и накопленная в бойлере вода подается в контур системы «теплый пол» (9) и контур подачи горячей воды (8).

Конечно, эффективность данной схемы будет неодинаковой в различных широтах. Ведь солнечный коллектор будет иметь наибольшую эффективность в летнее время года и, конечно же, в солнечную погоду. В наших широтах летом отапливать жилые помещения нет необходимости, поэтому теплогенератор можно вообще отключить. А так как лето у нас довольно жаркое и мы уже с трудом представляем свой быт без кондиционера, то тепловой насос предполагается включить на режим охлаждения. Естественно трубопровод, идущий от теплового насоса к бойлеру, будет перекрыт. Таким образом решать задачу горячего водоснабжения предполагается только с помощью гелиосистемы. И лишь в случае, если гелиосистема не справляется с этой задачей, использовать теплогенератор.

Как видим, схема довольно сложная и дорогостоящая. Общие приблизительные затраты в зависимости от выбранной схемы приведены ниже.

Затраты для вертикального коллектора:

  • Тепловой насос 6000 €;
  • Буровые работы 6000 €;
  • Эксплуатационные расходы (электричество): около 400 € в год.

Для горизонтального коллектора:

  • Тепловой насос 6000 €;
  • Буровые работы 3000 €;
  • Эксплуатационные расходы (электричество): около 450 евро в год.

Из крупных затрат потребуются расходы на закупку труб и на оплату труда рабочих.

Установка плоского солнечного коллектора (например, Vitosol 100-F и водонагревателя 300 л) обойдется в 3200 €.

Поэтому давайте, пойдем от простого к сложному. Сначала соберем простую схему отопления дома на основе теплогенератора, отладим ее, и постепенно будем добавлять в неё новые элементы, позволяющие увеличивать КПД установки.

Соберем систему отопления по схеме:

Схема теплоснабжения дома с использованием теплогенератора

1 – теплогенератор; 2 – бойлер косвенного нагрева; 3 – система отопления «теплый пол»; 4 – контур подачи горячей воды.

В итоге мы получили простейшую схему теплоснабжения дома, Я поделился своими мыслями для того, что бы побудить инициативных людей к развитию альтернативных источников энергии. Если у кого-то возникнут идеи или возражения по поводу написанного выше, давайте делиться мыслями, давайте накапливать знания и опыт в данном вопросе, и мы сбережем нашу экологию и сделаем жизнь немножко лучше.

Как видим здесь основной и единственный элемент, нагревающий теплоноситель, – это теплогенератор. Хотя в схеме и предусмотрен лишь один источник нагрева, она предусматривает возможность дальнейшего добавления дополнительных нагревательных устройств. Для этого предполагается использование бойлера косвенного нагрева с возможностью добавления или извлечения теплообменников.

Использование радиаторов отопления, имеющихся в схеме, изображенной на рисунке на один выше, не предполагается. Как известно система «теплый пол» более эффективно справляется с задачей обогрева помещений и позволяет экономить затрачиваемую энергию.

В данной статье описаны варианты отопления дома и горячего водоснабжения с помощью теплового насоса, солнечного коллектора и кавитационного теплогенератора.

Энергоносители с течением времени только дорожают, поэтому желательно выбрать экономичную технику. В статье содержится обзор вариантов применения одного из самых современных видов отопительных систем — теплового насоса вода-вода.

Особенности

Выгода такого устройства только кажется нереальной. Производители обещают, что, потратив 1 кВт электричества, получим до 5 кВт тепла в доме.

Не существует вечного двигателя с КПД 300—500 %.

Тепловой насос не производит тепло, как угольная или газовая печь. Он его перекачивает из окружающего дом пространства. Например, собирает со дна водоема. Это, кстати, самый выгодный источник тепла.

На глубине несколько метров температура воды изменяется мало.

Стабильность температуры поддерживается выделением тепла в расплавленном ядре планеты. Внутри Земли находится природный ядерный реактор.

Этого тепла мало, чтобы обогреть всю поверхность зимой.

Но можно собрать энергию с поверхности или из глубоких скважин, сконцентрировать, направить для обогрева коттеджа.

Устройство

Принцип действия давно известен. Есть три замкнутых герметичных контура — внутридомовой, компрессорный, внешний.

Основные компоненты:

  1. Система отопления. Оптимально применить теплые полы. Дополнительная опция — горячее водоснабжение.
  2. Конденсатор. Передает энергию, собранную вовне, от хладагента (обычно фреон) к теплоносителю (вода) отопления.
  3. Испаритель. Отбирает тепловую энергию у теплоносителя (например, этиленгликоль), циркулирующего во внешнем контуре.
  4. Компрессор. Перекачивает хладагент от испарителя, переводя его из газообразного в жидкое состояние, повышая давление и охлаждая в конденсаторе.
  5. Расширительный клапан. Устанавливается испарителем. Регулирует поток хладагента.
  6. Внешний контур. Укладывается на дно водоема или опускается в скважины.
  7. Насосы внутреннего и внешнего контура.
  8. Автоматика. Управляет системой по заданной величине обогрева помещения и изменений температуры наружного воздуха.

В испарителе теплоноситель внешнего контура охлаждается, отдавая тепло хладагенту, а затем насосом перекачивается по внешнему контуру. Там он нагревается, цикл вновь повторяется.

Внешний контур в пруду неподалеку от здания выглядит таким образом.

Коллектор эффективен круглогодично. Зимой на глубине более 3-х метров температура воды достаточна для нагрева.

После испарителя хладагент проходит компрессор , где его давление и температура увеличиваются. Потом в конденсаторе отдает тепло системе отопления.

Затем хладагент проходит дроссель, где резко падает давление вследствие расширения. При переходе в газообразное состояние почти мгновенно температура хладагента сильно уменьшается. Этот процесс можно ощутить на практике при заправке газовой зажигалки из баллончика со сжиженным газом. Значительный температурный перепад способствует эффективному поглощению тепла хладагентом из внешнего контура.

Есть вариант с разомкнутым коллектором. Возможен, когда вода хорошего качества. Тогда системе и насосу не угрожает заиливание, отложение солей жесткости, ускоренная коррозия.

До тех пор их развитие тормозила относительная дешевизна энергоносителей — нефти, газа и т. п. Кроме того, несовершенство технологий сдерживало массовое внедрение инновации.

Принцип работы

Тепловой насос (ТН) работает как холодильник, но с точностью до наоборот — физические процессы зеркальны. Они очень похожи — срок службы продолжителен — обычно более 30 лет.

Когда хладагент попадает в испаритель, эта фаза называется изотермическим расширением. Фреон получает тепло от внешнего коллектора, давление падает.

Затем происходит адиабатическое сжатие — компрессор увеличивает давление хладагента. При этом его температура возрастает до максимум +70° С.

Проходя конденсатор, фреон становится жидкостью, т. к. при повышенном давлении отдает тепло контуру отопления . Эта фаза называется изотермическим сжатием.

Когда хладон проходит дроссель, давление и температура резко падают. Происходит адиабатическое расширение.

На первый взгляд сложно для понимания. Но это стократно проще происходящего внутри привычного смартфона. Нам это не мешает использовать возможности гаджета. То же происходит при эксплуатации ТН.

Например, чтобы установить разную температуру обогрева для детской комнаты, гостиной, кухни.

Преимущества

Развитие транспорта, интернета, мобильной связи, строительных технологий все меньше привязывают человека к одному месту. Все чаще люди выбирают жизнь вне города «на лоне природы». Там уже можно получить привычный «городской» комфорт, удаленный заработок, общение по интернету со всеми континентами. Поэтому, а также из-за постоянного роста стоимости энергоресурсов, ТН становится все более востребованным.

Недостатки

Как и любое устройство, данная система имеет ряд недостатков.

Внешний контур

Из-за постоянного отбора геотермальной энергии возле расположения труб внешнего коллектора происходит охлаждение почвы. На севере короткое лето не дает возможности полного восстановления энергопотенциала. Это постепенно снижает эффективность ТН в течение примерно 5 лет. Затем тепловое равновесие стабилизируется.

Другой вариант — разместить скважины вокруг дома. Тогда отбор тепла происходит с огромной площади всего водоносного слоя, пересеченного пробуренными отверстиями.

Скважины — дорогое мероприятие. Особенно при плотном грунте. Не говоря уже о скальных породах. Тут можно применить вариант с открытым внешним коллектором.

Можно обойтись двумя скважинами. Одна — для забора грунтовых вод . Вторая — для слива обратно в водоносный слой. Такой вариант возможен при хорошем качестве воды.

Фильтры не всегда могут выручить, если слишком много солей жесткости или взвешенных микрочастиц. Перед монтажом надо обязательно сделать анализ воды из скважины.

Компрессорный контур

Электродвигатели шумят во время работы. Компрессор — еще больше, а также создает вибрацию. То же происходит во время работы домашнего холодильника. При этом мощность ТН гораздо больше. Шума и вибрации тоже.

Неприятных эффектов легко избежать:

  1. Тепловой насос закрыт шумоизолирующим корпусом.
  2. Компрессор крепится к опорной раме через резиновые прокладки с пружинами.
  3. Все оборудование лучше разместить в подсобном или подвальном помещении. Обязательно надо предусмотреть принудительную вентиляцию. Утечка фреона может быть опасна для здоровья человека.

Внутренний контур

Система отопления наполнена водой, нагретой до +35° С. Для обычных радиаторов этого мало. Особенно для северных регионов.

Но ТН хорошо работает с теплыми полами. При проектировании нужно предусмотреть достаточную степень тепловой инерционности наружных ограждений здания — толщину и материал стен, полов, крыши, тройное остекление.

Теплые полы, подогрев приточного воздуха создают комфортные и здоровые условия для жизни человека внутри здания.

Кроме температуры воздуха большое значение имеет радиационная температура — инфракрасное излучение стен, полов, потолка. Например, когда человек ночью сидит у костра, то весь горячий воздух идет вверх, никого не согревая. При этом стороне человека, обращенной к костру, тепло, а спина мерзнет.

Стоимость

Начальные затраты велики. Стоимость поставки оборудования, монтажа, пусконаладочных работ значительно превосходит традиционные системы отопления. Но дом строится на десятилетия.

Поэтому правильно будет учесть эксплуатационные расходы за весь срок службы ТН — 30 лет. Даже при сохранении действующих тарифов и цен на энергоносители экономичность системы типа вода-вода — вне конкуренции.

Ежегодная экономия в сравнении с:

  • газовым котлом — 70 % ;
  • электрообогревом — 350 %;
  • твердотопливным котлом — 50 %.

Теперь надо умножить существующие или проектируемые расходы на 30 лет. Экономия многократно перекроет начальные капиталовложения.

Отключение электричества

Компрессор, насосы, автоматика нуждаются в бесперебойном электроснабжении. На случай отключения должен быть электрогенератор с автоматическим запуском. Его мощность должна перекрывать сумму пусковых токов.

Есть большой плюс — после секундной полной нагрузки в момент запуска ТН высвобождается более 40 % мощности генератора. Этого хватит для электропитания остальной домашней техники и освещения.

Критерии выбора

На первый взгляд кажется сомнительной необходимость трудоемкой укладки на дно водоема нескольких сотен метров пластиковых труб или еще более затратного бурения скважин для ТН типа вода-вода. Ведь существуют системы типа воздух-воздух. Там внешний коллектор вообще отсутствует. Например, у очень качественного японского инверторного ТН воздух-вода производства компании Mitsubishi Heavy .

Все просто — плотность воды в 800 раз больше, чем воздуха. И тепла тоже. Поэтому эффективность и экономика у водяных систем всегда будет больше, чем у Мицубиси .

Расчет мощности

Для предварительных расчетов обычно используют упрощенную формулу: на 10 м2 отапливаемого здания требуется 700 Ватт тепла. Тогда для дома площадью 250 м2 нужно купить тепловой насос вода-вода мощностью 175 кВт.

Для обеспечения горячего водоснабжения итоговую цифру нужно увеличить на 15 %.

При этом не учитывается большая разница между климатическими зонами, например, Крыма и Московской области. Теплопотери внешних ограждающих конструкций разных зданий тоже сильно отличаются. Есть другие факторы, которые обязательно надо учитывать в расчете. Это могут сделать только специалисты.

Как сделать насос вода-вода своими руками

Изготовление теплового насоса вода-вода своими руками многократно сложнее бытового холодильника. Представленный ниже рабочий образец собран по схеме «труба в трубе». Производительность — 4 кВт тепла на 1 кВт потребленной электроэнергии.

Здесь применен спиральный компрессор ZR-24. Смонтирован внутри бухт-теплообменников, которые поставлены друг на друга.

Установлен манометр давления после компрессора.

Конденсатор

Потребуется медная трубка диаметром 1/2 дюйма с оконечными патрубками для соединения с компрессорным контуром.

Длину теплообменного змеевика можно посчитать по формуле:

L=W/0,8(t1—t2)3,14d

W — мощность теплового насоса, равная четырехкратной электрической мощности компрессора.

t1 — температура воды после нагрева конденсатором. Принимается равной +35° С.

t2 — температура воды на входе. Для варианта теплых полов — +30° С.

d — диаметр медной трубки.

Медную трубу нужно свить бухтой диаметром 1 метр внутри ПНД (полиэтилен низкого давления) трубы диаметром 25 мм.

Испаритель

Расчет поверхности теплообмена медной трубки — по той же формуле. Медная труба диаметром 3/4 дюйма вставлена в ПНД трубу диаметром 32 мм и они вместе свиты бухтой диаметром 1 метр.

Сварка и заполнение фреоном

Когда все контуры собраны вместе с терморегулятором, надо пригласить специалиста по холодильникам для заполнения компрессорного контура фреоном.

Кроме того, понадобятся минимум 2 регулятора: по величине температуры внутрикомнатного воздуха и степени нагрева системы «теплый пол».

Видео

В этом видеоролике объясняется, почему самодельный тепловой насос выдает тепла на 440 % больше, чем потребляет электроэнергии компрессор.

В следующем видеоролике — описание теплового насоса «под ключ» российского производителя стоимостью от 220 тыс. рублей.

Такие теплогенераторы получили практическое применение только после энергетических кризисов 70-х годов прошлого столетия.

Когда все системы смонтированы, опробованы, отрегулированы, то пользователь будет переключать лишь несколько тумблеров и кнопок.

Он обладает и другими выгодами:

  1. Экологически безопасен.
  2. Использует возобновляемый источник энергии.
  3. Отсутствуют регулярные затраты расходных материалов после пуска.
  4. Автоматически регулирует нагрев по температуре наружного воздуха.
  5. Срок окупаемости начальных затрат — 5-8 лет.
  6. Обеспечивает горячее водоснабжение.
  7. Летом работает как кондиционер, охлаждая приточный воздух.
  8. Минимальные энергозатраты — генерирует от 4 до 6 кВт тепла при 1 кВт потребленного электричества.
  9. С электрогенератором любого типа отопление и кондиционирование «удаленного от цивилизации» коттеджа будет независимым.
  10. Возможна адаптация к системе «умный дом» для дистанционного управления, дополнительной экономии энергии.
  11. Подорожание энергоносителей (нефти, газа) почти не влияет на личный бюджет. Если установить ветряной или солнечный генератор, то получится полная независимость. Гидроэлектрогенератор — идеальный вариант.

Остывания почвы можно избежать, если применить ТН типа вода-вода, расположив внешний коллектор в водоеме на глубине более 3-х метров.

Производители тепловых насосов делятся на три ценовых категории:

  1. Дешевые китайские. Например, Meeting (КНР), максимальная мощность — 7 кВт, отапливаемая площадь — 50—100 м2, цена — 95200 руб.
  2. Под американским брендом производятся в том же Китае. Например, Mammoth (США/КНР), максимальная мощность — 7,8 кВт, отапливаемая площадь — 50 м2, цена — 261000 руб.
  3. Самые дорогие традиционно — немецкие. Например, Stiebel Eltron (ФРГ), максимальная мощность — 9,9 кВт, отапливаемая площадь — 50 м2, цена — 645000 руб.

Тепловой насос «вода-вода» для дома

Альтернативные системы отопления дома, позволяющие обеспечить независимость от сетевых ресурсов и неустойчивой ценовой политики ресурсных организаций, давно и прочно завоевали интерес и популярность среди домовладельцев. Желание сохранить деньги и установить надежную и стабильную отопительную систему вполне логично и ограничивается только внешними причинами, возможностями или уровнем рентабельности. Рассмотрим один из интересных вариантов использования геотермальной энергии в масштабе частного домовладения.

В основе конструкции теплового насоса лежит использование низкопотенциального тепла грунтовых вод. Также могут быть использована тепловая энергия нижних слоев воды открытых водоемов. Из результатов исследований известно, что уже на глубине 1,5-2 м температура воды не опускается ниже 8°С. Придонные слои открытых водоемов (глубиной не менее 3 м) в самые сильные морозы имеют температуру 4°С. Это позволяет использовать имеющуюся энергию в практических целях.

Температура грунтовых или придонных вод почти не изменяется и обладает стабильными параметрами, что делает возможным создавать системы отопления с устойчивыми, поддающимися предварительному расчету, характеристиками. Отбор тепла у грунтовых вод позволяет обогревать крупные здания.

К сведению: В Луисвилле (Кентукки, США) находится крупнейшая геотермальная станция, работающая на низкопотенциальной энергии грунтовых вод. Станция обеспечивает отопление большого гостинично-офисного комплекса. Мощность системы составляет около 10 Мвт.

Как работают тепловые насосы «вода-вода»?

Тепловой насос, действующий по принципу «вода-вода», использует в своей конструкции цикл Карно. Говоря проще, используется принцип работы обычного холодильника, только в качестве полезного элемента используется не момент испарения, охлаждающий хладагент, а момент сжатия и конденсации, при котором выделяется большое количество теплоты.

Рабочий цикл насоса имеет двухтактную структуру и производится в двух теплообменниках — испарителе и конденсаторе. В испарителе происходит испарение хладагента — фреона, сопровождаемое большим поглощением тепловой энергии. Для ее пополнения используется энергия грунтовых вод, повышающих температуру газообразного хладагента. После этого он поступает в компрессор, где сжимается до 17 Бар.

Повышение давления вызывает резкое повышение температуры до 60-75°С. После этого хладагент поступает во второй теплообменник — конденсатор, где хладагент охлаждается и переходит в жидкое состояние. Параллельно с этим происходит передача тепловой энергии теплоносителю для системы отопления и ГВС дома.

После этого жидкий хладагент проходит через дроссель, где его давление снижается и поступает в испаритель, после чего цикл повторяется. Такова схема работы теплового насоса «вода-вода», способного обеспечить вполне комфортную температуру в доме при условии использования соответствующих методов обогрева. Необходимы соответствующие, низкотемпературные системы обогрева — теплый пол и т.п. Для радиаторных систем мощности тепловых насосов в холодных регионах может не хватить.

Достоинства и недостатки

К достоинствам тепловых насосов принято относить:

  • экономически эффективная технология, обеспечивающая энергосбережение жилища
  • экологичность системы обогрева
  • возможность использования в любых регионах
  • многофункциональность системы, позволяющая использовать ее в разных целях
  • безопасность системы, не представляющей угрозу для людей или имущества

К недостаткам системы следует причислить:

  • высокая стоимость системы
  • необходимость качественного утепления дома
  • система работает наиболее эффективно при использовании низкотемпературных отопительных контуров, оптимальный вариант — теплый пол

Кроме того, в северных регионах, со значительным понижением температур в зимнее время, использование тепловых насосов усложняется из-за необходимости утепления подводящих трубопроводов. Для надежности и гарантии от возникновения сбоев системы рекомендуется использовать дополнительный контур, работающий от другого источника.

Расчет мощности установки

На 1 м2 отапливаемой площади должно приходиться от 70 до 100 Вт тепловой энергии. Это — удельная величина. Более точное значение выбирается в соответствии со степенью утепления дома, высотой потолков, использованных при строительстве материалов и прочих параметров дома. Расчет теплонасоса производится в несколько этапов:

  • подсчитывается отапливаемая площадь помещения
  • вычисляется общее количество необходимой энергии для обогрева дома (произведение площади на удельное количество тепловой энергии)
  • на основании полученного значения производится выбор компрессора, насоса и прочих узлов системы
  • для создания линии ГВС значения увеличиваются на 20%

Самостоятельный расчет сложен, он требует наличия множества специфических данных и значений, оперировать которыми для неподготовленного человека чревато появлением ошибок. Если нет опыта выполнения подобных расчетов, лучше не рисковать и обратиться к специалистам или использовать онлайн-калькуляторы.

Что купить — топ-5 лучших насосов

Приобретение готового теплового насоса — весьма дорогостоящее мероприятие. Если возможности позволяют, следует разобраться в том, какой производитель сможет наилучшим образом оправдать ожидания пользователя, предоставить качественное и надежное оборудование. Из наиболее известных производителей можно порекомендовать:

  • Viessmann (Германия). Выпускает разные модели тепловых насосов, в том числе систем «вода-вода». Обеспечивает высокое качество оборудования, длительный срок службы, имеет широкий модельный ряд тепловых насосов
  • Stiebel Eltron (Германия). Традиционное немецкое качество и современные технологии — такой сплав рабочих свойств способен привлечь любого покупателя
  • Mammuth (США-Китай). Одна из наиболее распространенных на рынке компаний, имеющая достойное качество по вполне разумным ценам
  • Henk (Россия). Отечественный производитель, работающий для российского пользователя. Создание комплексов, предназначенных для эксплуатации в сложных климатических условиях
  • AERMEC (Италия). Известная компания, обеспечивающая европейское качество оборудования. Выпускается для частных домовладений разной площади, способно функционировать в разных условиях

Стоимость установки

Расходы на монтаж теплового насоса во многом зависят от внешнего источника открытый водоем, скважина или грунтовый коллектор. Работы по созданию и установке этих элементов имеют разную специфику и стоимость. Цена зависит от принятых в регионе расценок и тарифов, от расстояния до водоема или скважины и прочих факторов.

  • площадь дома 90–125 кв. м. — от 350 000 рублей
  • при площадь дома от 200 до 280 кв. м — установка теплового насоса обойдется от 500 000 рублей

Например, специалисты утверждают, что пользоваться тепловой энергией воды из водоема, находящегося на расстоянии более 100 м от дома нерентабельно. Тем не менее, при наличии возможности, установка с питанием от открытого водоема является наиболее выгодной и рациональной. Бурение скважины требует получения массы разрешений, использования специальной техники. Устройство коллектора выводит из эксплуатации большую площадь земли. Возможность значительно сэкономить — самостоятельный монтаж системы, выполнение установки своими руками или с помощниками из числа близких людей и друзей.

Подготовительные работы перед эксплуатацией

Приобретение комплекта оборудования еще не означает, что все готово к полноценному функционированию. Понадобится обеспечить подключение оборудования к системе отопления в доме и к наружной системе циркуляции воды. Потребуется выполнить массу различных мероприятий, без которых комплекс работать не будет. Рассмотрим их детальнее.

Выбор оптимального источника воды

Источник воды должен быть расположен поблизости от жилья. Это важно, поскольку в зимнее время транспортировка воды производится по поверхности земли, существует опасность перемерзания трубопроводов. Если организовать рытье траншей и укладку в них труб, то стоимость всего комплекта существенно увеличивается. При большом удалении источника (более 100 м) придется отказываться от использования воды из открытого водоема и пользоваться грунтовыми водами из скважины. Такой вариант имеет недостаток — заранее неизвестно качество воды. Поведение скважины также под вопросом, если ее стенки будут неустойчивы, склонны к обрушению или заиливанию, то вскорости может возникнуть необходимость повторного бурения.

Установка тепловой системы с использованием скважины

Для питания системы понадобится пробурить две скважины. Одна из них — дебетовая (подающая), из нее производится забор воды для комплекса. Вторая скважина — приемная, в нее производится сброс отработанной, прошедшей через испаритель теплового насоса жидкости. Наличие двух скважин делает дороже создание системы обогрева, но обеспечивает точку сброса отработанной воды и позволяет пополнять объемы водоносных горизонтов. Нарушение баланса объемов грунтовых вод — крайне опасное и непредсказуемое мероприятие, поэтому необходимо заботиться о максимальном смягчении возможных последствий.

Устройство дебетовой скважины

Глубина дебетовой скважины не должна превышать 50 м, иначе ее эксплуатация станет нерентабельной. Понадобится использование мощного насоса, стоимость которого высока, а потребление электроэнергии ставит под вопрос целесообразность всей затеи с использованием теплового насоса.

Объем воды, который должна обеспечить дебетовая скважина, рассчитывается по формуле:

  • где — объем воды.
  • Q — теплопроизводительность насоса
  • потребляемая мощность насоса
  • — разница температур на выходе из дебетовой скважины и на входе в приемную

Для проверки способности скважины обеспечить необходимый объем воды производится пробный забор в течение 3 дней Если за это время количество воды не убывает, скважина считается пригодной для эксплуатации.

Особенности приемной скважины

Приемная скважина должна располагаться по пути течения грунтовых вод. Поскольку заранее определить направление потока невозможно, то из двух скважин одну назначают дебетовой, а другую — приемной в случайном порядке. Если за время пробного забора температура воды падает, а объем уменьшается, назначение скважин изменяют, погружной насос переносят во вторую скважину.

Сливной трубопровод нельзя располагать над уровнем воды или слишком плотно опускать ко дну скважины — это вызовет заиливание или заболачивание полости. Трубопровод быстро забьется и потребует постоянной очистки. Для того, чтобы иметь возможность пользования системой, желательно иметь резервные скважины для быстрого переноса слива или питания.

Устройство системы с использованием водоема

Использование водоема делает запуск системы намного более дешевым и простым. Глубина водоема должна быть не менее 3 м (в теплых регионах достаточно 1 м). Необходимо, чтобы уровень воды был стабилен и не подвергался сезонным колебаниям. Оптимальный материал для труб — полиэтилен низкого давления. Необходимо учесть важность утепления и защиты трубопроводов от механического повреждения.

Подготовка дома к установке теплового насоса

Установка системы теплового насоса требует качественной подготовки дома. Необходимо тщательное утепление, устройство системы обогрева (радиаторная система неэффективна, оптимальный вариант — теплый пол). Питание теплового насоса должно быть бесперебойным. Если помимо обогрева систему планируется использовать как источник ГВС, то понадобится организовать прием отработанной воды.

Важно! Понадобятся некоторые меры безопасности. В системе используется фреон, который вреден для организма людей или животных, поэтому понадобится приточно-вытяжная вентиляционная система. Кроме того, необходимо обеспечить прочную и надежную опорную площадку для установки оборудования, обладающую высокой несущей способностью.

Дополнительное оборудование для системы «вода-вода»

Для функционирования системы понадобится наличие дополнительного оборудования. В данном случае термин «дополнительное» обозначает лишь использование вне самого теплового насоса, но никак не возможность отказаться или проигнорировать некоторые устройства. Система сможет работать только в полной комплектации, отсутствие любого элемента автоматически прекращает ее работу. Рассмотрим дополнительные элементы:

Погружной насос для скважин и водоемов

Выбор мощности погружного насоса производится по трем критериям:

  • объемы жидкости, которую придется перекачивать
  • глубина скважины
  • диаметр скважины

Оптимальный вариант — скважины диаметром в 4 дюйма, так как под них создано большинство погружных насосов. Надо учитывать наличие или отсутствие системы ГВС, поскольку под нее понадобится более мощный насос. Выбор конкретной модели производится исходя из объемов жидкости, параметров скважин и прочих обстоятельств. Могут быть использованы как универсальные, так и специализированные скважинные образцы насосов.

Промежуточный теплообменник теплового насоса

Установка промежуточного теплообменника исключает возможность гидроудара в компрессоре, опасность которого возникает при насыщении фреона парами воды. Еще одна функция промежуточного теплообменника — выравнивание температуры хладагента на выходе из конденсатора для организации более устойчивой работы системы. Теплообменники бывают трех типов:

  • открытые. Позволяют удалять пары воды из фреона
  • змеевиковые. Обеспечивают регулирование расхода хладагента
  • кожухотрубные.

    Как устроен тепловой насос «вода-вода» и сделать его самостоятельно

    Рабочая жидкость и хладагент не смешиваются, что позволяет использовать высокое давление при циркуляции пара и воздуха

Выбор устройства обусловлен особенностями системы и финансовыми возможностями. Специалисты рекомендуют предпочитать разборные модели.

Фильтры для теплового насоса

Качество воды, поступающей из скважин или водоемов, соответствует ее естественному состоянию. Помимо механических включений из песка, грязи или иных частиц в воде могут содержаться различные микроэлементы, такие как железо, марганец, аммиак, хлор, сероводород и т. д. Для очистки воды используются специальные фильтры. Механические включения удаляются в гидроциклонах, выводящих твердые взвеси. Микроэлементы выводятся устройствами обратного осмоса, смягчителями или обезжиривателями. Кроме того, необходимо использовать угольные фильтры или УФ-излучатели для обеззараживания жидкости.

Электрогенератор для резервного питания

Внезапное отключение питания прекратит работу системы. Для запуска потребуется дополнительный источник питания, способный обеспечить работу теплового насоса до появления тока в основной сети. Эту функцию выполняет резервный электрогенератор, обладающий достаточной мощностью для поддержания работы комплекса.

Особенности эксплуатации теплового насоса вода-вода

Эксплуатация теплового насоса «вода-вода» требует регулярных проверок состояния всех узлов и элементов системы. Отдельные комплексы нуждаются в сервисном обслуживании, производимом 1-2 раза в год группой специалистов. Подлежат проверке:

  • качество соединений трубопроводов
  • уровень давления в системе
  • целостность корпусов или кожухов, возможность протечек масла
  • состояние проводки

Проверки лучше всего доверить опытным специалистам, способным вовремя обнаружить признаки поломок и принять меры для их устранения.

В преддверии зимних холодов особую значимость приобретает вопрос, как подготовить воду для отопительных систем. Правильная подготовка воды вдвойне важна для владельцев частных загородных участков, не подключенных к теплоцентрали и получающих воду из скважин или колодцев. Если вода жесткая, содержит сторонние примеси, например, железо или марганец, это чревато выходом из строя не только сантехники и бытовых электроприборов, но и порчей теплообменников, коррозией трубопроводов и радиаторов.

Система отопления загородного дома.

Первый и самый важный этап работы

Главное, что следует предпринять перед тем, как планировать мероприятия по водоподготовке для системы отопления, — провести химический анализ состава воды.

Известная (а) и предложенная (б) схемы подготовки воды для отопления: 1 — водонагреватель; 2 — пароводонагреватель; 3 — холодильник; 4 — питательный бак; 5 — коллектор высокого давления; 6 — коллектор низкого давления; пар; конденсат.

Провести анализы в домашних условиях можно при помощи тест-наборов для аквариумов (они продаются в любом зоомагазине). Однако, чтобы получить более точные значения и наиболее эффективно подготовить воду для отопления, следует воспользоваться услугами сертифицированной лаборатории.

Вода для анализа набирается в пластиковую бутылку из-под негазированной питьевой воды объемом 1,5 л. Недопустимо использовать бутылки из-под сладкой газированной воды и прочих напитков. Пробку и бутылку хорошо промывают той самой водой, которую забирают для анализа, при этом нельзя использовать моющие средства. Предварительно воду сливают 10-15 минут, чтобы исключить попадание в образец застоявшейся воды, так как это может сказаться на результатах тестов.

Чтобы предотвратить насыщение воды растворенным в воздухе кислородом, ее набирают тонкой струйкой, так чтобы она стекала по стенке бутылки. Вода наливается под горлышко. Бутылка плотно заворачивается пробкой, чтобы под нее не проник воздух. Кислород провоцирует протекание химических процессов, и это тоже может повлиять на результаты тестов. Если нет возможности немедленно отвезти пробы в лабораторию, то воду можно хранить в холодильнике (не в морозилке!), но не более двух суток.

Система отопления.

Комплексный анализ воды включает проверки по следующим показателям:

  • жесткость;
  • железо;
  • марганец;
  • рН (степень кислотности);
  • окисляемость перманганатная (показывает наличие органических веществ в воде);
  • минерализация;
  • аммоний;
  • насыщенность кислородом;
  • мутность, цветность, запах.

При необходимости берутся пробы на наличие микроорганизмов. Некоторые из них, например, легионеллы и амебы, не только способны нанести серьезный вред здоровью, но и могут осесть внутри труб, образуя слизистую микробную пленку. Это способствует коррозии и ухудшает качество отопления.

Слишком жесткая и слишком мягкая вода

Пример схемы котельной для системы отопления, обеспечивающей быстрый монтаж и комфортное отопление и подготовку горячей воды в частном доме, коттедже, даче.

Нормальные показатели жесткости — 7-10 мг-экв/л. Если это значение превышено, значит, вода содержит избыточное количество солей кальция и магния. При нагревании соли выпадают в осадок, известный как накипь. Накапливаясь внутри труб и батарей, накипь препятствует теплоотдаче и способствует износу системы отопления.

Самый доступный способ смягчения воды — кипячение. При термической обработке удаляется оксид углерода, а потому значительно снижается кальциевая жесткость. Тем не менее, некоторое количество кальция остается в воде, поэтому полностью устранить жесткость кипячением не удастся.

Другой метод очистки — использование фильтров с ингибиторами (нейтрализаторами) накипи, такими как: известь, едкий натр, кальцинированная сода. Жесткую воду также пропускают через фильтры из ионообменной смолы, при этом ионы калия и магния заменяются ионами натрия.

Использование магнитных умягчителей относится к безреагентным способам смягчения воды. Под влиянием магнитного поля свойства воды изменяются так, что соли калия и магния теряют способность формироваться в виде твердого осадка и выделяются в виде рыхлого шлама. Однако соли все же остаются в воде и нуждаются в выведении. Кроме того, этот способ не столь эффективен при температуре воды выше 70-75 градусов (то есть температуре, обычной для бойлеров, водонагревателей и котлов).

Грубая очистка и обезжелезивание всей воды, умягчение воды для систем отопления и горячего водоснабжения (ГВС).

Очистка методом обратного осмоса заключается в продавливании воды через специальную мембрану, задерживающую вредные вещества. Это позволяет полностью удалить соли кальция и магния, являющиеся причиной накипи. Но у этого способа имеются и недостатки: высокая стоимость очистного оборудования и расход большого количества воды при очистке (на 1 л чистой воды примерно от 2 до 10 л сливаются в канализацию).

Слишком мягкая обессоленная вода, например, дождевая или талая, вредна для системы отопления не меньше, чем жесткая, поскольку содержащиеся в воде кальциевые соли нейтрализуют кислые реакции, замедляя коррозию. Поэтому, прежде чем использовать для системы отопления дождевую или талую воду, следует дать ей отстояться несколько дней и заливать, только предварительно убедившись, что уровень ее рН находится в пределах 6,5-8, но не ниже. Это особенно важно, если разводка была сделана из неоцинкованных труб, изначально подверженных коррозии.

Тепловой насос “вода-вода”: устройство, принцип работы, правила обустройства отопления на его базе

Переизбыток железа приводит к заиливанию внутренних поверхностей труб и размножению в железистом осадке бактерий, которое происходит особенно активно уже при 30-40 градусах тепла. Это приводит к быстрому износу системы горячего водоснабжения и отопления.

Самый простой способ обезжелезивания — отстаивание. Под воздействием кислорода содержащееся в воде железо самостоятельно окисляется, образуя ржавый осадок. Чтобы провести обезжелезивание самостоятельно, понадобится большой резервуар емкостью 200-300 л и устройства для нагнетания кислорода: брызгальная установка или компрессор (для небольших резервуаров подойдет обычный компрессор для аквариумов).

Для обезжелезивания воды вполне применим тот же способ, что и для ее смягчения, — использование метода обратного осмоса. Также применяются фильтры с ионообменными смолами. Для предотвращения размножения железобактерий используют хлорирование (50 мг/л), но предварительно следует выяснить, насколько устойчивы к хлору установленные водопроводные сооружения.

Если содержание железа в воде свыше 5 мг/л (что не редкость для воды из скважин), то для очистки используются фильтры с глауконитовым песком, обогащенным оксидом марганца. Пройдя через фильтрующую среду, служащую катализатором окисления, вода избавляется от железа, марганца и сероводорода, которые выпадают в осадок. Когда такой фильтр засоряется, его требуется промывать растворами, восстанавливающими окислительную способность (раствором перманганата калия). Следует помнить, что при подобном методе очистки вредные химикаты сливаются в канализацию, поэтому его допустимо использовать только при наличии на участке централизованной канализации.
Удаление механических загрязнений, марганца, микроорганизмов, кислорода

Грубая очистка воды, отдувка растворенных газов, обезжелезивание, сорбционная очистка, умягчение и обеззараживание воды.

Для удаления сторонних примесей (песка, волокон торфа, фито- и зоопланктона, мелкой глины, грязи, органических веществ и т.п.) применяются различные механические фильтры, оснащенные промывными или съемными картриджами. При очень сильных загрязнениях используются напорные фильтры с зернистой загрузкой (кварцевый песок, керамзит, активированный уголь, антрацит).

Самым наглядным признаком наличия в воде марганца является черный осадок. Его концентрация редко превышает 2 мг/л, но уже при концентрации в 0.05 мг/л марганец может осаживаться на стенках труб, постепенно закупоривая их. Обычно марганец растворен в воде вместе с железом, так что с обезжелезиванием воды одновременно происходит и деманганация. Для удаления марганца используются фильтры с ионообменными смолами.

Для обеззараживания воды, то есть удаления вирусов, бактерий, простейших микроорганизмов, применяются озонирование, хлорирование, а также облучение ультрафиолетовыми лучами с длиной волны в 200-300 нм.

Грубая очистка, реагентное обеззараживание и обезжелезивание, умягчение воды, устранение избыточного хлора и сорбционная доочистка воды, финишная тонкая очистка.

Метод ультрафиолетового облучения является самым безопасным способом обеззараживания воды среди вышеперечисленных, так как не воздействует на ее химический состав, поражая исключительно вредоносные микроорганизмы. Обеззараживание воды при помощи УФ-установок происходит за несколько секунд.

Коррозионная активность воды сильно зависит от наличия растворенного в ней кислорода. Норма растворенного кислорода для закрытой и открытой системы отопления одинакова и составляет не более 0,05 мг/куб.м. Для снижения содержания кислорода в воде используются деаэрационные установки и колонки.

Чтобы кислород не попадал в отопительные системы иными путями (с воздухом), нужно следить за общей целостностью и герметичностью системы и не наполнять ее водой слишком быстро, так как это способствует образованию воздушных пробок. Если используются трубы из газопроницаемых материалов, например, полиэтилена или полипропилена, они должны быть защищены антидиффузным слоем из алюминия.

Промывка системы отопления от накипи

Грубая очистка и обезжелезивание всей воды, умягчение воды, устранение избыточного хлора и сорбционная доочистка воды, ультрафиолетовое обеззараживание.

Правильная подготовка воды для систем отопления включает: механическую очистку от загрязнений, смягчение, обезжелезивание, удаление марганца и, при необходимости, обеззараживание и деаэрацию. Для заливки в системы отопления подходит дистиллированная вода, отстоявшаяся, талая или дождевая. Вода для отопления с ингибиторами коррозии и накипи продается в специализированных магазинах. Хороша она тем, что ее не нужно подготавливать перед заливкой в отопительную систему.

Самая тщательная подготовка воды не избавляет от необходимости следить за системой отопления, особенно в частном доме. При заметном ухудшении качества работы отопительных батарей проводится промывка системы. Для этого сливается вода, затем демонтируются радиаторы. Дно ванны застилается тряпками, канализационное отверстие прикрывается сеточкой, чтобы туда не попали отвалившиеся кусочки накипи. Затем в ванную приносится и ставится радиатор со снятыми заглушками.

Промывку осуществляют гибким шлангом, сняв с него душевую лейку. Радиатор при промывке следует периодически переворачивать. Для извлечения крупных кусков накипи используется металлический прут. Промывку заканчивают, когда из радиатора перестают вымываться куски накипи и вода делается прозрачной.

Решил я себе для отопления дома поставить тепловой насос (ТН) в качестве основного источника тепла, вместо электрокотла.
Задача была уменьшить расходы на отопление в будущем и разгрузить электросеть.
У фирмы Energylex был приобретен ТН в сборе, пробурены скважины и подключено все это дело в существующую систему отопления с теплым полом, фанкойлами и оставшимися от старого котла батареями отопления.
Как оказалось впоследствии, модель и поставщик ТН был выбран не удачно, ТН не выдавал заявленные характеристики.

Так же им не удобно было пользоваться из-за особенностей встроенного контроллера. Внутри был установлен контроллер Digimark, который не работал как заявлено и постоянно выпадал в ошибку. Функцию плавного изменения оборотов компрессора, как в последствии оказалось он тоже не поддерживал, хотя такая функция значилась в характеристиках.
В итоге этот контроллер был снят и установлен «Народный контроллер теплового насоса» (НК).
Это проект контроллера теплового насоса с открытым исходным кодом, в качестве мозгов, которого, выступает Arduino DUE.
Пришлось принять активное участие в доработке программы под свои и чужие нужды.
То, что базовый ТН не выдает, что заявлено выяснилось при установке расходомеров на теплоносители.
Так что ими не нужно пренебрегать, хоть они могут и не бюджетно стоить. Так же нужно отдельно на ТН поставить счетчик электричества, что бы можно было рассчитать коэффициент производительности теплового насоса (COP).
Ведь если он будет низкий, то весь смысл в использовании теплового насоса теряется, можно сразу и электричеством греть.
Тепловой насос у меня геотермальный — перекачивает энергию из земли и ей греет дом.
В качестве источника тепла используются скважины наклонного бурения, которые пробурены из одного колодца. Теплоноситель в скважинах — смесь изопропилового и этилового спирта.
Еще в планах использовать солнечный коллектор (СК).
Далее тепловой насос с помощью холодильной машины (ТН) переносит тепло в контур отопления дома и нагрева бойлера горячего водоснабжения. Теплоноситель системы отопления дома — этиленгликоль.
В итоге общая схема приблизительно такая:

Скриншет с веб-интерфейса контроллера с подписями

Особенность контроллера — платформа Arduino DUE и можно использовать платы, продающиеся на китайских площадках, типа aliexpress.com, так же можно и заказать «материнскую плату», в которую вставляется только плата DUE.
Плата Arduino DUE использует в качестве ядра 32 битный ARM Cortex-M3 микроконтроллер — Atmel (Microchip) SAM3X8E.
Так как контроллер достаточно мощный, это позволяет его использовать еще в качестве веб-сервера, для доступа к управлению ТН через интернет.
Для этого используется сетевая плата на чипе WIZnet W5500.
У меня стоят мини платы, что на картинке справа.
Можно взять и другие платы с W5500, так же, в принципе, как и другие чипы WIZnet — 5100, 5200.
Еще нужны платки:
1. Часы реального времени (RTC) на DS3231 c I2C памятью AT24C32 (лучше заменить память на 64 кбайт)
2. Управления шаговым двигателем на ULN2003, если в ТН используется ЭРВ
3. Реле на нужное количество каналов, твердотельные или обычные
4.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *