Тверской Городской Форум

Статьи, обзоры и общение

Прибор на воду

Содержание

Виды и типы расходомеров воды

Наиболее простым типом расходомеров являются тахометрические водосчетчики, в которых вращающаяся за счет движения воды крыльчатка передает вращение на счетчик. Такие устройства в качестве стационарных приборов учета работают только на водопроводах малого диаметра. Аналогичные переносные «вертушки» широко используются для временных точечных измерений в самотечных каналах и реках.

Для решения задач измерения объема поданной воды на городских водопроводах широко используют полнопроходные электромагнитные расходомеры жидкости. Они отличаются высокой точностью измерений (погрешность может составлять +0,5% или даже +0,3%). Это наиболее распространенные приборы для наружных трубопроводов водоснабжения малого диаметра. Однако для труб большого диаметра применение электромагнитных водомеров усложняется их большим весом и габаритами, а также высокой стоимостью. Также весьма спорным является вопрос «беспроливных», «имитационных» методов периодической поверки таких устройств большого диаметра, введенных из-за отсутствия в недавнем прошлом в России соответствующих проливных стендов, а также из-за огромных затрат на демонтаж и транспортировку подобного оборудования весом сотни килограммов для периодической поверки на проливном стенде. Полнопроходные электромагнитные счетчики используют также на сетях напорной канализации. Есть попытки установки оборудования такого типа на безнапорных стоках с добавлением уровнемера, но они не получили распространения из-за высокой стоимости.

Широко распространенным типом приборов для напорных и безнапорных трубопроводов различного диаметра являются ультразвуковые расходомеры. В них могут быть использованы различные методы измерений: время-импульсный, кросс-корреляционный и метод Доплера.

Для работы в больших самотечных каналах иногда используют радарные или лазерные бесконтактные расходомеры. Эти устройства определяют скорость на поверхности потока радарным датчиком скорости, а уровень потока — ультразвуковым или радарным уровнемером.

Для указанной задачи используют также уровнемеры, на основе показаний которых определяется объемный расход, вычисляемый по формуле Маннинга (или Павловского) как функция уклона и сопротивления (шероховатости стенок). Этот метод также не учитывает распределение скоростей в сечении потока. Кроме того, при возникновении подпоров (засоров ниже по течению) ошибка этого метода становится еще выше.

В напорных трубопроводах используют также штанговые электромагнитные счетчики на воду, представляющие собой длинную металлическую штангу с электромагнитным датчиком на конце, вставляемые в трубопровод через шаровой кран и обеспечивающие измерение скорости потока в одной точке (как правило, в центре трубы).

Области применения различных типов водосчетчиков

Тахометрические датчики применяются на водопроводе малого диаметра. Их обычно устанавливают на внутренних сетях в качестве квартирных или домовых расходомеров счетчиков воды.

Электромагнитные полнопроходные счетчики широко распространены на наружных сетях водоснабжения небольшого диаметра, их также применяют на больших трубах магистрального водопровода и на напорной канализации.

При этом на трубах диаметром свыше 300 мм начинают проявляться основные недостатки этих устройств: большой вес и габариты, а также высокая цена. Поэтому имеется тенденция (в первую очередь в Германии и Западной Европе) замены полнопроходных электромагнитных приборов на канализации диаметром более 300 мм на кросс-корреляционные, а на водопроводе – на ультразвуковые время-импульсные. Однако на сегодня наиболее распространенные промышленные расходомеры воды для магистральных трубопроводов — электромагнитные.

Стационарные время-импульсные расходомеры работают в основном с достаточно чистой и однородной жидкостью, так как прохождение ультразвука через непредсказуемую неоднородную среду вносит существенную погрешность в измерения.

Они работают на напорных трубах от малого и до самого большого из реально существующих диаметров в водоснабжении, а также на самотечных каналах. Кроме того, портативные время-импульсные счетчики являются в настоящее время наиболее популярными переносными расходомерами воды.

Доплеровские и кросс-корреляционные приборы требуют наличия взвеси или пузырьков воздуха в жидкости, поэтому они применяются только на грязной или слегка загрязненной воде. В более сложных и ответственных случаях рекомендуются кросс-корреляционные устройства в силу их большей точности и надежности показаний, в простых и менее ответственных случаях можно устанавливать доплеровские, в силу их более низкой стоимости.

Радарные и лазерные системы предназначены для измерения расхода в безнапорных каналах на основе измерения скорости на поверхности потока и уровня потока с дальнейшим вычислением средней скорости потока и, соответственно, объемного расхода, по формулам и с введением поправочных коэффициентов.

В силу невозможности получения информации о распределении скоростей по слоям потока бесконтактным методом и использованием теоретических коэффициентов точность данных приборов существенно уступает точности погружных устройств, поэтому их рекомендуется применять только в тех случаях, когда установка датчиков в поток невозможна.

Уровнемеры, благодаря их низкой стоимости, также часто используются для определения расхода на самотечных каналах. Однако фактическая погрешность их может быть очень большой, поэтому не рекомендуется ставить их для коммерческого учета на объектах с большим водопотреблением, где ошибка приводит к существенным финансовым потерям.

Электромагнитные штанговые измерительные устройства применяют только на достаточно чистой жидкости, так как в грязной среде их чувствительный элемент быстро покрывается налетом и перестает корректно работать.

Их преимуществом является низкая цена, простота установки, которая осуществляется через стандартный шаровой кран, приваренный к трубопроводу, а также низкое энергопотребление, обеспечивающее возможность их длительного (до 5 лет) использования в автономном режиме, без каких-либо проводов, с передачей полученных данных по сетям мобильной связи.

Их недостатком является более высокая погрешность по сравнению с полнопроходными электромагнитными и с ультразвуковыми приборами. Это оборудование редко используют для коммерческого учета (хотя это допускается), чаще их применяют на диктующих точках с целью контроля за гидравлическими режимами водопроводной сети, для периодического контроля со стороны водоканалов корректности показаний стационарных узлов учета на предприятиях водопользователях, а также в системах поиска скрытых утечек в качестве легко переставляемого с места на место оборудования.

Как выбрать стационарный расходомер?

При выборе оборудования для стационарного узла учета необходимо учитывать следующие факторы:

  1. Степень загрязненности жидкости. Чистая вода делает невозможным применение доплеровских и кросс-корреляционных приборов. В грязной среде не смогут работать время-импульсные и тахометрические водосчетчики, а также штанговые электромагнитные расходомеры. В слегка загрязненной жидкости могут работать все типы оборудования.
  2. Напорная труба или самотек. Тахометрические счетчики, электромагнитные штанговые и полнопроходные устройства используются на напорных сетях. Радарные расходомеры и уровнемеры – только на безнапорных. Доплеровские, кросс-корреляционные и время-импульсные устройства могут работать как в напорных, так и в безнапорных трубах, для разных случаев выбираются разные типы датчиков на воду.
  3. Для напорных труб – максимальное давление. Так, для врезных доплеровских и кросс-корреляционных датчиков существует ограничение по давления 4 бара, другие типы сенсоров могут работать при 20 барах и более.
  4. Для напорных труб: диаметр. Для внутренних домовых труб водоснабжения малого диаметра (до 150-200 мм) используются тахометрические водосчетчики, для наружных сетей диаметром от 150 до 300 (400) мм чаще применяют электромагнитные счетчики, при больших диаметрах для грязной воды рекомендуются кросс-корреляционные или доплеровские, а для чистой – электромагнитные приборы учета.
  5. Для безнапорных труб: размер и форма канала, уровень заполнения.
  6. Скорость потока. Например, в самотечных каналах с относительно чистой водой при большой скорости потока рекомендуются время-импульсные расходомеры, при низкой и средней скоростях – кросс-корреляционные или доплеровские.
  7. Конструкция трубы или канала в месте установки прибора, наличие доступа к внешним или внутренним стенкам канала, возможность остановки потока при монтаже.
  8. Межповерочный интервал приборов, способы поверки (необходимость демонтажа для поверки), доступность снятия датчиков для поверки, обслуживания, замены и ремонта, срок гарантии, простота и удобство обслуживания, дружелюбный и понятный интерфейс, требования к квалификации обслуживающего персонала и другие вопросы обслуживания приборов являются важными показателями при выборе счетчиков воды промышленных.
  9. Допустимая погрешность измерений (либо информация, влияющая на выбор допустимой погрешности: является ли учет технологическим или коммерческим; для узлов коммерческого учета – водопотребление объекта и средний размер платы за воду; для узлов технологического учета – дальнейшее использование результатов измерений (будут ли использованы в контуре автоматического управления технологическими процессами и т.п.)). Так в одном и том же безнапорном канале при низких требованиях по точности можно поставить уровнемер или радарный расходомер, при средних требованиях – доплеровский расходомер жидкости, при высоких требованиях – кросс-корреляционный водосчетчик.
  10. Требования к химической стойкости, пожарной и взрывобезопасности оборудования на объекте установки. Для данных условий требуются датчик специального исполнения.
  11. Стоимость приборов. Продолжая пример из предыдущего пункта на одном и том же узле учета исходя из требований по точности можно установить очень дешевое оборудование на основе уровнемера, либо более дорогой доплеровский прибор, либо еще более дорогой, но точный и надежный кросс-корреляционный счетчик.
  12. Наличие жестких финансовых ограничений. Понятно, что всегда нужно стремиться к выбору оптимального по цене оборудования для решения поставленной задачи, однако в ряде случаев финансовая ситуация не позволяет установить необходимый прибор на воду. В этом случае необходимо решение либо об отказе от установки оборудования (откладывания решения вопроса), либо об установке более дешевого прибора если это в принципе целесообразно, либо о привлечении дополнительных кредитов, если видна быстрая окупаемость проекта и т.д.

Расходоме́р — прибор, измеряющий объёмный расход или массовый расход вещества, то есть количество вещества (объём, масса), проходящее через данное сечение потока, например, сечение трубопровода в единицу времени. Если прибор имеет интегрирующее устройство (счётчик) и служит для одновременного измерения и количества вещества, то его называют счётчиком-расходомером.

Механические счётчики расхода

Скоростные счётчики

Скоростные счётчики устроены таким образом, что жидкость, протекающая через камеру прибора, приводит во вращение вертушку или крыльчатку, угловая скорость которых пропорциональна скорости потока, а следовательно, и расходу.

Объёмные счётчики

Поступающая в прибор жидкость или газ измеряется отдельными, равными по объёму дозами, которые затем суммируются. Счётчики газа на этом принципе часто встречаются в быту.

Классификация объёмных счетчиков
  • В зависимости от конструктивных особенностей рабочего органа: поршневые, шестеренные.
  • В зависимости от вида движения рабочего органа: поступательного движения, вращательно-ротационного движения, прецессионного, планетарного движения.

В зависимости и от конструкции и от вида движения рабочего органа классифицируются на:

  • поршневые (кольцевые) с планетарным движением кольцевого поршня;
  • шестеренные (круглые) с ротационным вращением круглых шестерен;
  • шестеренные (овальные) с ротационным вращением овальных шестерен;
  • лопастные (камерные) с ротационным вращением лопастей, выполненных в виде камер;
  • лопастные (пластинчатые) с ротационным вращением пластинчатых лопастей.

Ёмкость и секундомер

Возможно, самый простой способ измерить расход — это использовать некоторую ёмкость и секундомер. Поток жидкости направляется в некоторую ёмкость, и по секундомеру засекается время заполнения этой ёмкости. Зная объём ёмкости и поделив его на время заполнения, можно узнать расход жидкости. Этот способ подразумевает прерывание нормального течения потока, однако может давать непревзойдённую точность измерения. Широко используется в тестовых и поверочных лабораториях.

Ролико-лопастные расходомеры

Область применения ролико-лопастных расходомеров очень широка: измерение расходов на испытательных стендах, в гидроприводах станков и технологического оборудования, на стационарных и передвижных бензо- и маслозаправочных станциях, в топливных системах карбюраторных и дизельных двигателей автомобилей, тракторов, строительно-дорожных, сельскохозяйственных, лесозаготовительных машин, тепловозов и судов, как дозаторы при заливке танкеров, ж/д цистерн, резервуаров.

Расходомер оснащен встроенным электронным датчиком и программируемым микропроцессорным прибором с жидкокристаллическим дисплеем. Электроника расходомера имеет автономное питание на 3 — 5 лет и герметизированный выход на вторичный электронный прибор или компьютер, управляющий механизмами дозирования. Для метрологического применения или при необходимости проведения высокоточных измерений в технологических процессах, расходомер оснащен датчиком с высокой разрешающей способностью (до долей см3).

Шестерёнчатые расходомеры

Впервые расходомер с овальными шестернями был изобретен компанией Bopp & Reuther (Германия) в 1932 году.

Измеряющий элемент состоит из двух шестерёнок овальной формы. Протекающая жидкость вращает данные шестерёнки. При каждом обороте пары овальных колес через прибор проходит строго определённое количество жидкости. Считывая количество оборотов, можно точно определить, какой объём жидкости протекает через прибор.

Данные расходомеры отличаются высокой точностью, надёжностью и простотой, что позволяет их использовать для жидкостей с высокой температурой и под большим давлением. Отличительной особенностью расходомеров с овальными шестернями является возможность использования для жидкостей с высокой вязкостью (мазут, битум).

Расходомеры на базе объёмных гидромашин

В системах объёмного гидропривода для измерения объёмного расхода рабочей жидкости применяют объёмные гидромашины (как правило — шестерённые или аксиально-плунжерные гидромашины).

Объёмная гидромашина в этом случае работает как гидродвигатель, но без нагрузки на валу. Тогда объёмный расход через гидромашину можно определить по формуле:

где

  • — объёмный расход,
  • — рабочий объём гидромашины (определяется по паспорту гидромашины),
  • — частота вращения выходного вала гидромашины, которую можно измерить тахометром.

Заметим, что объёмная гидромашина пропускает через себя весь расход жидкости, что для объёмного гидропривода не представляет сложности ввиду малых расходов.

>Рычажно-маятниковые расходомеры

Основная статья: Рычажно-маятниковый расходомер

Расходомеры переменного перепада давления

Расходомеры переменного перепада давления основаны на зависимости разницы давлений, создаваемых конструкцией расходомера, от расхода.

Расходомеры с сужающими устройствами

Они основаны на зависимости перепада давления на сужающем устройстве от скорости потока, в результате которого происходит преобразование части кинетической энергии потока в потенциальную.

Принцип действия расходометров этого типа основан на эффекте Вентури. Вентури-расходомер сужает поток жидкости в некотором устройстве, например, диафрагмой и датчиками давления или дифманометром измеряет разницу давлений перед указанным устройством и непосредственно в месте сужения. Этот метод измерения расхода широко используется при транспортировке газов по трубопроводам и использовался ещё во времена Римской империи.

Диафрагма представляет собой диск со сквозным отверстием, вставленный в поток. Дисковая диафрагма сужает поток, и разница давлений, измеряемая перед и за диафрагмой, позволяет определить расход в потоке. Этот тип расходомера можно грубо считать одной из форм Вентури-метров, однако имеющую более высокие потери энергии. Существует три типа дисковых диафрагм: концентрические, эксцентриковые и сегментальные.

Трубка Пито

Расходомеры на основе трубки Пито измеряют динамическое давление в застойной зоне потока (англ.).

Зная динамическое давление, с помощью уравнения Бернулли можно определить скорость потока, а значит, и объёмный расход (Q = S * V, где S — площадь поперечного сечения потока, V — средняя скорость потока).

Расходомеры с гидравлическим сопротивлением

Принцип действия гидродинамических расходомеров основан на измерении давления движущей среды, т.е. давления, которое действует на помещенное в поток тело. Достоинствами гидродинамических расходомеров являются: конструктивная простота, надежность и удобство обслуживания. Одним из распространенных вариантов применения является их использование в качестве индикаторов расхода загрязнения жидкостей и газов.

Центробежные расходомеры

Центробежные расходомеры представляют собой колено на трубопроводе, которые охватывают его по всей окружности трубопровода. Отборы давления находятся в верхней части на внешней и внутренней стенках.

Принцип действия центробежных расходомеров основан на том, что при движении среды по криволинейному участку трубопровода появляются центробежные силы, создающие перепад давлений между точками с разными радиусами кривизны. Согласно этому следует, что где больше кривизна, там и центробежная сила больше и больше давление на стенку.

Расходомеры с напорным устройством

Расходомеры постоянного перепада давления

Ротаметры

Основная статья: Ротаметр

Ротаметры предназначены для измерения расхода чистых жидкостей и газов. Они состоят из вертикальной конической трубы, выполненной из металла, стекла или пластика, в которой свободно перемещается вверх и вниз специальный поплавок. Поток движется по трубе в направлении снизу вверх, заставляя поплавок подниматься до уровня, на котором все действующие силы находятся в состоянии равновесия. На поплавок воздействуют три силы:

  • выталкивающая сила, которая зависит от плотности среды и объёма поплавка;
  • сила тяжести, которая зависит от массы поплавка;
  • сила потока, которая зависит от формы поплавка и скорости потока, проходящего через сечение ротаметра между поплавком и стенками трубы.

Каждая величина расхода соответствует определённому переменному сечению, зависящему от формы конуса измерительной трубы и конкретного положения поплавка. В случае стеклянных конусов, значение расхода может быть считано прямо со шкалы на уровне поплавка. В случае конусов, выполненных из металла, положение поплавка передаётся на дисплей при помощи системы магнитов — не требуется никакого дополнительного источника питания. Различные диапазоны измерения достигаются за счёт многообразия размеров и форм конуса, а также возможности выбора различных форм и материалов изготовления поплавка.

Оптические расходомеры

Основная статья: Оптические расходомеры

Оптические расходомеры используют свет для определения расхода.

Лазерные расходомеры

Маленькие частички, которые неизбежно содержатся в природных и промышленных газах, проходят через два лазерных луча, направленных на поток от источника. Свет лазера рассеивается, когда частичка проходит через первый лазерный луч. Рассеянный лазерный луч поступает на фотодетектор, который в результате генерирует электрический импульсный сигнал. Если та же самая частица пересекает второй лазерный луч, то рассеянный лазерный свет поступает на второй фотодетектор, который генерирует второй импульсный электрический сигнал. Измеряя интервал времени между двумя этими импульсами, можно вычислить скорость газа по формуле V = D / T, где D — расстояние между двумя лазерными лучами, Т — время между двумя импульсами. Зная скорость потока, можно определить расход (Q = S * V, где S — площадь поперечного сечения потока, V — средняя скорость потока).

Основанные на лазерах расходомеры измеряют скорость частиц — параметр, который не зависит от теплопроводности, вида газа или его состава. Лазерная технология позволяет получать очень точные данные, причём даже в тех случаях, когда другие методы применять не удаётся или они дают большу́ю погрешность: при высоких температурах, малых расходах, высоких давлениях, высокой влажности, вибрациях трубопроводов и акустическом шуме.

Оптические расходометры способны измерять скорости потока от значений 0,1 м/с до более чем 100 м/с.

Ультразвуковые расходомеры

Основная статья: Ультразвуковой расходомер

Ультразвуковые время-импульсные

Время-импульсные расходомеры измеряют разницу во времени прохождения ультразвуковой волны по направлению и против направления потока жидкости. Такой принцип измерений обеспечивает высокую точность (± 1 %). При этом он хорошо работает для чистого потока или потока с незначительным содержанием взвешенных частиц. Время-импульсные расходомеры применяются для измерения расхода очищенной, морской, сточной воды, нефти, в том числе сырой, технологических жидкостей, масел, химических веществ и любой однородной жидкости.

Принцип действия ультразвуковых расходомеров основан на измерении разницы во времени прохождения сигнала. При этом два ультразвуковых сенсора, расположенные по диагонали напротив друг друга, функционируют попеременно как излучатель и приёмник. Таким образом, акустический сигнал, поочерёдно генерируемый обоими сенсорами, ускоряется, когда направлен по потоку, и замедляется, когда направлен против потока. Разница во времени, возникающая вследствие прохождения сигнала по измерительному каналу в обоих направлениях, прямо пропорциональна средней скорости потока, на основании которой можно затем рассчитать объёмный расход. А использование нескольких акустических каналов позволяет компенсировать искажения профиля потока.

Ультразвуковые фазового сдвига

Доплеровский расходомер основан на эффекте Доплера. Он хорошо работает с суспензиями, где концентрация частиц выше 100 ppm и размер частиц больше 100 мкм, но концентрация составляет менее 10 %.

Электромагнитные расходомеры

Основная статья: Электромагнитные расходомеры

Ещё в 1832 году Майкл Фарадей пробовал определить скорость течения реки Темзы, измеряя напряжение, индуцируемое в потоке воды магнитным полем Земли. Принцип электромагнитного измерения расхода основан на законе индукции Фарадея. В соответствии с данным законом, напряжение создаётся, когда проводящая жидкость проходит через магнитное поле электромагнитного расходомера. Это напряжение пропорционально скорости потока среды.

Индуцированное напряжение измеряется либо двумя электродами, находящимися в контакте со средой, либо ёмкостными электродами, не контактирующими со средой, и передаётся в преобразователь сигналов. Преобразователь сигналов усиливает сигнал и преобразует его в стандартный токовый сигнал (4—20 мА), а также в частотно-импульсный сигнал (например, один импульс на каждый кубический метр измеряемой среды, прошедшей через измерительную трубу). Принцип действия электромагнитных расходомеров основан на взаимодействии движущейся электропроводной жидкости с магнитным полем. При движении жидкости в магнитном поле возникает ЭДС, как в проводнике, движущемся в магнитном поле. Эта ЭДС пропорциональна скорости потока, и по скорости потока можно определить расход.

Тепловые расходомеры

Основная статья: Тепловой расходомер

Расходомеры теплового пограничного слоя

Применяются для измерения расхода в трубах небольшого диаметра от 0,5—2,0 до 100 мм. Для измерения расхода в трубах большого диаметра находят применение особые разновидности термоконвективных расходомеров:

  • парциальные с нагревателем на обводной трубе;
  • с тепловым зондом;
  • с наружным нагревом ограниченного участка трубы.

Достоинством термоконвективных расходомеров является неизменность теплоёмкости измеряемого вещества при измерении массового расхода. Также достоинством является то, что термоконвективных расходомерах отсутствует контакт с измеряемым веществом. Недостаток и тех и других расходомеров — их большая инерционность.

Калориметрические расходомеры

В калориметрических расходомерах происходит нагревание или охлаждение потока внешним источником тепла, создающим в потоке разницу температур, по которой и определяют расход. Если пренебречь потерями тепла из потока через стенки трубопровода в окружающую среду, то уравнение теплового баланса между теплом, генерируемым нагревателем, и теплом, переданным потоку, приобретает вид:

,

где

Тепло к потоку в калориметрических расходомерах подводят обычно электро-нагревателями, для которых:

,

где

  • — сила тока через нагревательный элемент;
  • — электрическое сопротивление нагревателя.

На основе этих уравнений статическая характеристика преобразования, которая связывает перепад температур на сенсорах с массовым расходом, приобретёт вид:

. >Меточные расходомеры

Основная статья: Меточные расходомеры

Примечания

Электромагнитный расходомер.Монтаж на наклонном участке уменьшает ошибку измерения вследствие изменения эффективного сечения трубы твердым осадком или завоздушиванием.Бытовые объёмные счётчики газа Скоростной счётчик — турбинкаПринцип ультразвукового измерения расходаУльтразвуковые расходомеры на установке висбрекингаЭлектромагнитный расходомер Принцип электромагнитного измерения расхода

  1. 12Хансуваров К.И., Цейтлин В.Г.

    Техника измерения давления, расхода, количества и уровня жидкости, газа и пара: Учебное пособие для техникумов. — М.: Издательство стандартов, -1990.- с. 170-173 287 с, ил.

  2. Lipták, Flow Measurement, p. 85
  3. American Gas Association Report Number 3
  4. Кремлевский П. П. Расходомеры и счетчики количества веществ: Справочник: Кн. 2 / Под общ. ред. Е. А. Шорникова. — 5-е изд., перераб. и доп. — СПб.: Политехника, 2004. — 412 с

Место

Наименование

Характеристика в рейтинге

Счётчики – это приборы для точного и непрерывного контроля за расходом конкретного ресурса, в данном случае – воды. Их практическое применение в бытовых условиях (в подавляющем большинстве случаев) позволяет снизить плату за горячее и холодное водоснабжение квартиры или частного дома. Конструкционно они подразделяются на три вида: механические, ультразвуковые и электромагнитные. Самыми распространёнными, бюджетными и практичными являются механические счётчики, оснащённые крыльчаткой и секционным счётным механизмом.

На рынке можно встретить сотни моделей механических счётчиков разного уровня исполнения, цены и марки производителя. Одни имеют высокие эксплуатационные способности и могут прослужить не одну пятилетку, тогда как другие, отличающиеся довольно посредственным качеством, с трудом «доживают» до срока плановой поверки. Учитывая параметр долговечности в качестве одного из основных, мы подготовили для вас список самых лучших механических счетчиков для воды, разделённых на разные ценовые категории. Все товары в рейтинге отбирались с учётом следующих критериев:

  • соотношение цены номинальному качеству изделия;
  • популярность у потребителей, отзывы экспертов;
  • наличие запасных частей в комплекте;
  • простота установки (переходные диаметры, соответствие единым стандартам);
  • степень чувствительности к наводимым магнитным полям;
  • качество отдельно взятых составных элементов.

3 «Декаст Метроник» ВСКМ 90-15 ДГ

Высокая степень долговечности (до 10 лет)
Страна: Россия
Средняя цена: 769 руб.
Рейтинг (2019): 4.8

Универсальный счетчик простой крыльчатой конструкции с наличием импульсного выхода на случай централизованного учёта расхода холодной и горячей воды. В качестве чувствительного прибора в нём используется герконовый датчик, очень распространённый и легко заменимый в случае крайней необходимости. Долговечность работы, по заверениям производителя, составляет не менее 10 лет, после чего крыльчатка имеет все шансы преодолеть порог недопустимых погрешностей.

Судя по отзывам пользователей, «Декаст Метроник» ВСКМ 90-15 ДГ способен работать с водой, максимальная температура которой составляет +90 градусов по Цельсию. В качестве основного недостатка приводится фактическое отсутствие в комплекте монтажных частей, однако найти их в рознице достаточно просто (из-за универсальности). При не самом большом весе (0,5 килограмм) данный счетчик отлично справляется с возможными гидроударами, благодаря чему может без опаски устанавливаться в квартирах и частных домах.

2 «Норма» СТВ-50 (фланцевый)

Лучший специальный механический счетчик для фланцевых труб
Страна: Россия
Средняя цена: 8 700 руб.
Рейтинг (2019): 4.8

Антимагнитный фланцевый прибор учёта горячей и холодной воды «Норма» СТВ-50 – вполне разумная альтернатива многим иностранным аналогам. Обладая возможностью централизации учёта расхода с помощью постановки импульсного датчика, он нисколько не проигрывает конкурентам ни в сроке службы, ни по рабочим параметрам. Так, диапазон температур проточной холодной воды варьируется от +5 до +40 градусов Цельсия, а для горячей верхняя планка и вовсе доходит до отметки в +90 градусов (+150 в специальных моделях). Гарантированный срок службы данной модели составляет 12 лет, но при «деликатном» использовании он способен прослужить заведомо больше рассчитанной нормы.

Поскольку фланцевые счетчики имеют более специфичную направленность, установка в квартире или в ряде частных домов для них даже не рассматривается. В связи с этим, потребительское мнение ограничивается отзывами промышленников, которых, впрочем, вполне устраивают рабочие характеристики этой модели.

1 «Норма» СВК-25

Длительный срок эксплуатации. Выбор пользователей
Страна: Россия
Средняя цена: 3 500 руб.
Рейтинг (2019): 4.9

«Норма» СВК-25 – тот самый случай, когда эксплуатационные характеристики оказываются оптимальными для повседневного использования, а дороговизна бесспорно оправдывается и комплектацией, и качеством изготовления. Механизм этого счетчика заботливо «посажен» в коррозионностойкий (и антифрикционный) латунный корпус с патрубками диаметром 25 миллиметров. В исполнении для горячей воды модель способна выдержать температуры до +90 градусов Цельсия; для холодной – в половину меньше.

Как и во всех рассмотренных приборах категории, «Норма» СВК-25 обладает импульсным выходом, а также встроенной защитой от магнитных полей. Примечательно, что комплектация является одной из сильнейших сторон данной модели – помимо самого прибора учёта потребитель получает присоединительные элементы и подробную инструкцию по монтажу.

Судя по отзывам пользователей, это самый оптимальный вариант для установки в квартиру или дом, качество которого проявляется на протяжении трёх межповерочных (6 лет) сроков.

к началу рейтинга

Внимание! Представленная выше информация не является руководством к покупке. За любой консультацией следует обращаться к специалистам!

Несмотря на то, что электромагнитные и ультразвуковые счётчики – это сравнительно недавние разработки, имеющие практичные преимущества, подавляющее большинство потребителей всё же склоняются к покупке простого механического счётчика. В чём причина подобного выбора, каковы плюсы и минусы механических моделей относительно других, узнаем из таблицы сравнения.

Тип счётчика

Плюсы

Минусы

Механический

+ Высокая надёжность, обоснованная предельно простой конструкцией

+ Компактность

+ Очень низкая погрешность измерений

+ Простота монтажа

+ Средняя длительность срока службы составляет 10-12 лет

+ Низкая, по сравнению с другими типами счётчика, цена

+ Наличие моделей с импульсным выходом

– Неминуемый износ маленькой зубчатой передачи, вращающей крыльчатку и счётный механизм

– Высокая чувствительность к наведению магнитного поля

Ультразвуковой

+ Высокая точность измерения

+ Отсутствие в конструкции трущихся деталей и, как следствие, низки износ

+ Не возникает гидравлического сопротивления

+ Большой диапазон измерений

+ Показания счётчика (для предотвращения самопроизвольного сброса при обесточивании) архивируются

– Энергозависимость: функционирует только при наличии активного источника питания

– На погрешность в значительной степени влияют пузырьки воздуха, находящиеся в воде

Электромагнитный

+ Благодаря конструкции происходит минимизация гидравлических потерь

+ Качество текущей жидкости никак не влияет на показание счётчика

+ Находят применение не только в бытовых условиях, но и на химических и пищевых предприятиях

– Магниты, установленные в счётчике, могут стать причиной засора подающей трубы

– Высокая чувствительность к пузырькам воздуха в жидкости, наличию турбулентных течений и токам заземления, протекающим по трубопроводу

Электрическая энергия передается на громадные расстояния между различными государствами, а распределяется и потребляется в самых неожиданных местах и объемах.

Расходомеры для воды

Все эти процессы требуют автоматического учета проходящих мощностей и совершаемых ими работ. Состояние энергетической системы постоянно изменяется. Его необходимо анализировать и грамотно управлять основными техническими параметрами.

Измерение величин текущих мощностей возложено на ваттметры, единицей измерения которых является 1 ватт, а совершенной работы за определенный промежуток времени — на счетчики, учитывающие количество ватт в течение одного часа.

В зависимости от объема учитываемой энергии приборы работают на пределах кило-, мега-, гиго- или тера- единиц измерения. Это позволяет:

  • одним главным счетчиком, расположенным на подстанции, обеспечивающей питанием крупный современный город, оценивать терабайты киловатт-часов, израсходованные на потребление всех квартир и производственных предприятий административно промышленного и жилого центра;

  • большим количеством приборов, установленных внутри каждой квартиры или производства, учитывать их индивидуальное потребление.

Ваттметры и счетчики работают за счет постоянно поступающей на них информации о состоянии векторов тока и напряжения в силовой цепи, которую предоставляют соответствующие датчики — измерительные трансформаторы в цепях переменного тока или преобразователи — постоянного.

Принцип работы любого счетчика можно представить упрощенно поблочной схемой, состоящей из:

  • входных и выходных цепей;

  • внутренней схемы.

Приборы учета электрической энергии подразделяются на две большие группы, работающие в сетях:

1. переменного напряжения промышленной частоты;

2. постоянного тока.

Первая категория этих приборов наиболее многочисленная. С нее и начнем краткий обзор разнообразных моделей.

Приборы учета электроэнергии переменного тока

Этот класс счетчиков по конструктивному исполнению разделяют на три типа:

1. индукционные, работающие с конца девятнадцатого века;

2. электронные устройства, появившиеся не так давно;

3. гибридные изделия, сочетающие в своей конструкции цифровые технологии с индукционной или электрической измерительной частью и механическим счетным устройством.

Индукционные приборы учета

Принцип работы такого счетчика основан на взаимодействии магнитных полей. создаваемых электромагнитами катушки тока, врезанной в цепь нагрузки, и катушки напряжения, подключенной параллельно к схеме питающего напряжения.

Они создают суммарный магнитный поток, пропорциональный значению проходящей через счетчик мощности. В поле его действия расположен тонкий алюминиевый диск, установленный в подшипнике вращения. Он реагирует на величину и направление создаваемого силового поля и вращается вокруг собственной оси.

Скорость и направление движения этого диска соответствуют значению приложенной мощности. К нему подключена кинематическая схема, состоящая из системы шестеренчатых передач и колесиков с цифровыми индикаторами, которые указывают количество совершенных оборотов, выполняя роль простого счетного механизма.

Однофазный индукционный счетчик, особенности устройства

Конструкция самого обычного индукционного счетчика, созданного для однофазной сети питания переменного тока, показана в разобранном виде на картинке, состоящей из двух совмещенных фотографий.

Все основные технологические узлы обозначены указателями, а электрическая схема внутренних соединений, входных и выходных цепей приведена на следующей картинке.

Винт напряжения, установленный под крышкой, при работе счетчика всегда должен быть закручен. Им пользуются только работники электротехнических лабораторий при выполнении специальных технологических операций — поверок прибора.

Про устройство, принцип действия и особенности эксплуатации электрических счетчиков ранее было рассказано здесь:

Как правильно подключить электросчетчик

Как снимать показания со счетчика электроэнергии

Электрические индукционные счетчики подобного типа успешно дорабатывают свой ресурс в жилых домах и квартирах людей. Их подключают в электрощитках по типовой схеме через однополюсные автоматические выключатели и пакетный переключатель.

Особенности конструкции трехфазного индукционного счетчика

Устройство этого измерительного прибора полностью соответствует однофазным моделям за исключением того, что в формировании суммарного магнитного потока, воздействующего на вращение алюминиевого диска, участвуют магнитные поля, создаваемые катушками токов и напряжений всех трех фаз схемы питания силовой цепи.

Благодаря этому количество деталей внутри корпуса увеличено, а располагаются они плотнее. Алюминиевый диск к тому же сдвоен. Схема подключения катушек тока и напряжения выполняется по предыдущему варианту подключения, но с учетом обеспечения суммирования магнитных потоков от каждой отдельной.

Этот же эффект можно достичь, если вместо одного трехфазного счетчика в каждую фазу системы включить однофазные приборы. Однако в этом случае потребуется заниматься сложением их результатов вручную. В трехфазном же индукционном счетчике эта операция автоматически выполняется одним счетным механизмом.

Трехфазные индукционные счетчики могут выполняться двух видов для подключения:

1. сразу к силовым цепям, мощность которых необходимо учитывать;

2. через промежуточные измерительные трансформаторы напряжения и тока.

Приборы первого типа используются в силовых схемах 0,4 кВ с нагрузками, которые не могут причинить своей небольшой величиной вреда прибору учета. Они работают в гаражах, небольших мастерских, частных домах и называются счетчиками прямого подключения.

Схема коммутаций электрических цепей подобного прибора в электрощитке показана на очередной картинке.

Все остальные индукционные приборы учета работают непосредственно через измерительные трансформаторы тока или напряжения по-отдельности, в зависимости от конкретных условий системы электроснабжения, либо с совместным их использованием.

Внешний вид табло старого индукционного счетчика подобного типа (САЗУ-ИТ) показан на фотографии.

Он работает во вторичных цепях с измерительными трансформаторами тока номинальной величины 5 ампер и трансформаторами напряжения— 100 вольт между фазами.

Буква «А» в названии типа прибора «САЗУ» обозначает, что прибор создан для учета активной составляющей полной мощности. Замерами реактивной составляющей занимаются другие типы приборов, имеющие в своем составе букву «Р». Они обозначаются типом «СРЗУ-ИТ».

Приведенный пример с обозначением трехфазных индукционных счетчиков свидетельствует о том, что их конструкция не может учитывать величину полной мощности, затраченной на совершение работы. Для определения ее значения необходимо снимать показания с приборов учета активной и реактивной энергии и производить математические вычисления по подготовленным таблицам или формулам.

Этот процесс требует участия большого количества людей, не исключает частых ошибок, трудоемок. От его проведения избавляют новые технологии и приборы учета, работающие на полупроводниковых элементах.

Старые счетчики индукционного типа уже практически перестали выпускаться в промышленном масштабе. Они просто дорабатывают свой ресурс в составе работающего электротехнического оборудования. На вновь монтируемых и вводимых в работу комплексах их уже не используют, а ставят новые, современные модели.

Электронные приборы учета

Для замены счетчиков индукционного типа сейчас выпускают много электронных приборов, предназначенных для работы в бытовой сети или в составе измерительных комплексов сложного промышленного оборудования, потребляющего громадные мощности.

Они в своей работе постоянно анализируют состояние активной и реактивной составляющих полной мощности на основе векторных диаграмм токов и напряжений. По ним производится вычисление полной мощности, и все величины заносятся в память прибора. Из нее можно просмотреть эти данные в нужный момент времени.

Два типа распространенных систем электронных учетов

По типу измерения составных входных величин счетчики электронного типа выпускают:

  • со встроенными измерительными трансформаторами тока и напряжения;

  • с измерительными датчиками.

Устройства со встроенными измерительными трансформаторами

Принципиальная структурная схема электронного однофазного счетчика представлена на картинке.

Микроконтроллер обрабатывает сигналы, поступающие от трансформаторов тока и напряжения через преобразователь и выдает соответствующие команды на:

  • дисплей с отображением информации;

  • электронное реле, осуществляющее коммутации внутренней схемы;

  • оперативно-запоминающее устройство ОЗУ, которое имеет информационную связь с оптическим портом для передачи технических параметров по каналам связи.

Устройства со встроенными датчиками

Это другая конструкция электронного счетчика. Ее схема работает на основе датчиков:

  • тока, состоящего из обыкновенного шунта, сквозь который протекает вся нагрузка силовой схемы;

  • напряжения, работающего по принципу простого делителя.

Приходящие от этих датчиков сигналы токов и напряжения очень малы. Поэтому их усиливают специальным устройством на основе высокоточной электронной схемы и подают на блоки амплитудно-цифрового преобразования. После них сигналы перемножаются, фильтруются и выводятся на соответствующие устройства для интегрирования, индикации, преобразований и дальнейшей передачи различным пользователям.

Работающие по этому принципу счетчики обладают чуть меньшим классом точности, но вполне отвечают техническим нормативам и требованиям.

Принцип использования датчиков тока и напряжения вместо измерительных трансформаторов позволяет по этому типу создавать приборы учета для цепей не только переменного, но и постоянного тока, что значительно расширяет их эксплуатационные возможности.

На этой основе стали появляться конструкции счетчиков, которыми можно пользоваться в обоих видах систем электроснабжения постоянного и переменного тока.

Тарифность современных приборов учета

Благодаря возможности программирования алгоритма работы электронный счетчик может учитывать потребляемую мощность по времени суток. За счет этого создается заинтересованность населения снижать потребление электроэнергии в наиболее напряженные часы «пик» и этим разгружать нагрузку, создаваемую для энергоснабжающих организаций.

Среди электронных приборов учета есть модели, обладающие разными возможностями тарифной системы. Наибольшими способностями обладают счетчики, позволяющие гибко перепрограммировать счетное устройство под меняющиеся тарифы электросетей с учетом времени года, праздников, различных скидок в выходные дни.

Эксплуатация электросчетчиков по тарифной системе выгодна потребителям — экономятся деньги на оплату электроэнергии и снабжающим организациям — снижается пиковая нагрузка.

Как устроен и работает электронный счетчик электроэнергии

Особенности конструкции промышленных приборов учета высоковольтных цепей

В качестве примера подобного устройства рассмотрим белорусский счетчик марки Гран-Электро СС-301.

Он обладает большим количеством полезных для пользователей функций. Как и обыкновенные бытовые приборы учета пломбируется и проходит периодическую поверку показаний.

Внутри корпуса отсутствуют подвижные механические элементы. Вся работа основана на использовании электронных плат и микропроцессорных технологий. Обработкой входных сигналов тока занимаются измерительные трансформаторы.

У этих устройств особое внимание уделяется надежности работы и защите безопасности информации. С целью ее сохранения вводится:

1. двухуровневая система пломбирования внутренних плат;

2. пятиуровневая схема организация допуска к паролям.

Система пломбирования осуществляется в два приема:

1. доступ внутрь корпуса этого счетчика ограничивается сразу на заводе после завершения его технических испытаний и окончания государственной поверки с оформлением протокола;

2. доступ к подключению проводов на клеммы блокируется представителями энергонадзора или энергоснабжающей компании.

Причем, в алгоритме работы устройства существует технологическая операция, фиксирующая в электронной памяти прибора все события, связанные со снятием и установкой крышки клеммника с точной привязкой по дате и времени.

Схема организация допуска к паролям

Система позволяет разграничить права пользователей прибора, отделить их по возможностям допуска к настройкам счетчика за счет создания уровней:

  • нулевого, обеспечивающего снятие ограничений на просмотр данных местно либо удаленно, синхронизацию времени, корректировку показаний. Право предоставляется допущенным к работе с прибором пользователям;

  • первого, позволяющего выполнять наладку оборудования на месте установки и записывать в оперативную память настройки рабочих параметров, не влияющие на характеристики коммерческого использования;

  • второго, разрешающего допуск к информации прибора представителям энергонадзора после его наладки и подготовки к вводу в эксплуатацию;

  • третьего, дающего право снимать и устанавливать крышку с клеммника для доступа к зажимам или оптическому порту;

  • четвертого, предусматривающего возможность доступа к платам прибора для установки или замены аппаратных ключей, снятия всех пломб, выполнения работ с оптическим портом, модернизации конфигурации, калибровке поправочных коэффициентов.

Способы подключения промышленных счетчиков на предприятиях энергетики

Для работы приборов учета создаются разветвленные вторичные схемы измерительных цепей за счет использования высокоточных трансформаторов тока и напряжения.

Небольшой фрагмент такой схемы для токовых цепей счетчика Гран-Электро СС-301 показан на картинке. Он взят с рабочей документации.

Для этого же прибора учета фрагмент подключения цепей напряжения показан ниже.

Объединение приборов учета в единую систему АСКУЭ

Система автоматизированного контроля и учета электрической энергии стала активно развиваться благодаря возможностям электронных счетчиков и разработкам способов дистанционной передачи информации. Для подключения приборов учета индукционной системы разработаны специальные датчики.

Основной задачей системы АСКУЭ является быстрый сбор информации в едином центре управления. При этом на него поступают потоки данных со всех потребителей действующих подстанций. Они содержат сведения по вопросам потребленной и отпущенной мощности с возможностью анализов способов ее выработки и распределения, расчета стоимости и учета экономических показателей.

Для решения организационных вопросов системы АСКУЭ обеспечивается:

  • установка высокоточных приборов учета в местах учета электроэнергии;

  • передача информации от них выполняется цифровыми сигналами с помощью «сумматоров», имеющих оперативную память;

  • организация системы связи по проводным и радиоканалам;

  • осуществление схемы обработки получаемой информации.

Приборы учета электроэнергии постоянного тока

Модели счетчиков этого класса фиксируют энергию в разных технологических режимах, но чаще всего они применяются на оборудовании электроподвижного состава городского транспорта и на железных дорогах.

Они созданы на основе электродинамической системы.

Основной принцип работы подобных счетчиков состоит во взаимодействии сил магнитных потоков, образованных двумя катушками:

1. первая закреплена стационарно;

2. вторая имеет возможность вращения под действием сил магнитного потока, величина которого пропорционально зависит от значения тока, протекающего по цепи.

Параметры вращения катушки передаются на счетный механизм и учитываются расходом электрической энергии.

Смотрите также: Способы экономии электроэнергии в квартире и частном доме

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *